【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)的圖象分別與x,y軸交于A,B兩點(diǎn),正比例函數(shù)的圖象與交于點(diǎn)C(m,3),
(1)求m的值及的解析式;
(2)求的值.
【答案】(1)=4,;(2)5.
【解析】
(1)先求得點(diǎn)C的坐標(biāo),再運(yùn)用待定系數(shù)法即可得到l2的解析式;
(2)過C作CD⊥AO于D,CE⊥BO于E,則CD=3,CE=4,再根據(jù)A(10,0),B(0,5),可得AO=10,BO=5,進(jìn)而得出S△AOC-S△BOC的值;
(1)把C(m,3)代入一次函數(shù),可得,
解得=4,
∴C(4,3)
設(shè)的解析式為,則,
解得,
∴的解析式為
(2)如圖,過C作CD⊥AO于D,CE⊥BO于E,則CD=3,CE=4,
,令,則;
令,則,
∴A(10,0),B(0,5),
∴AO=10,BO=5,
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等邊三角形,點(diǎn)D在邊AB上.
(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;
(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想ED和EB數(shù)量關(guān)系,并加以證明;
(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EH⊥AB于點(diǎn)H,過點(diǎn)E作GE∥AB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對(duì)稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo): ( 。( 。,( 。;
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點(diǎn)P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C,D,E,F(xiàn),G,H為⊙O的八等分點(diǎn),AD與BH的交點(diǎn)為I,若⊙O的半徑為1,則HI的長(zhǎng)等于( 。
A. 2﹣ B. 2+ C. 2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4米.如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )
A.0.7米B.1.5米C.2.2米D.2.4米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線:與軸相交于B,與軸相交于點(diǎn)A.直線:經(jīng)過原點(diǎn),并且與直線相交于C點(diǎn).
(1)求ΔOBC的面積;
(2)如圖2,在軸上有一動(dòng)點(diǎn)E,連接CE.問CE+BE是否有最小值,如果有,求出相應(yīng)的點(diǎn)E的坐標(biāo)及CE+BE的最小值;如果沒有,請(qǐng)說明理由;
(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點(diǎn)正好落在軸上.將ΔDCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點(diǎn)C,E的對(duì)稱點(diǎn)分別為C′,E′.在旋轉(zhuǎn)過程中,設(shè)C′E′所在的直線與直線相交于點(diǎn)M,與軸正半軸相交于點(diǎn)N.當(dāng)ΔOMN為等腰三角形時(shí),求線段ON的長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列條件中,不能證明△ABD≌△ACD的是( ).
A.BD=DC, AB=AC B.∠ADB=∠ADC,BD=DC
C.∠B=∠C,∠BAD=∠CAD D. ∠B=∠C,BD=DC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD邊AD沿折痕AE折疊,使點(diǎn)D落在BC上的F處,已知AB=6,△ABF的面積為24,則EC等于( 。
A.2B.C.4D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,∠D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m).
(1)求B,C的距離.
(2)通過計(jì)算,判斷此轎車是否超速.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com