【題目】如圖,直角坐標(biāo)系xOy中,一次函數(shù)的圖象分別與xy軸交于A,B兩點(diǎn),正比例函數(shù)的圖象交于點(diǎn)C(m,3)

(1)m的值及的解析式;

(2)的值.

【答案】1=4,;(25.

【解析】

1)先求得點(diǎn)C的坐標(biāo),再運(yùn)用待定系數(shù)法即可得到l2的解析式;
2)過CCDAOD,CEBOE,則CD=3CE=4,再根據(jù)A100),B0,5),可得AO=10,BO=5,進(jìn)而得出SAOC-SBOC的值;

(1)C(m3)代入一次函數(shù),可得

解得=4,

C(4,3)

設(shè)的解析式為,則,

解得,

的解析式為

(2)如圖,過CCDAOD,CEBOE,則CD=3,CE=4,

,令,則;

,則,

A(10,0)B(0,5),

AO=10BO=5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點(diǎn)D在邊AB上.

(1)如圖1,當(dāng)點(diǎn)E在邊BC上時(shí),求證DE=EB;

(2)如圖2,當(dāng)點(diǎn)E在△ABC內(nèi)部時(shí),猜想EDEB數(shù)量關(guān)系,并加以證明;

(3)如圖3,當(dāng)點(diǎn)E在△ABC外部時(shí),EHAB于點(diǎn)H,過點(diǎn)EGEAB,交線段AC的延長(zhǎng)線于點(diǎn)G,AG=5CG,BH=3.求CG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,在平面直角坐標(biāo)系中

1作出ABC關(guān)于軸對(duì)稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo) ( 。( 。,( 。;

2直接寫出ABC的面積為 ;

3軸上畫點(diǎn)P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B,C,D,E,F(xiàn),G,H為⊙O的八等分點(diǎn),ADBH的交點(diǎn)為I,若⊙O的半徑為1,則HI的長(zhǎng)等于( 。

A. 2﹣ B. 2+ C. 2 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小巷左右兩側(cè)是豎直的墻,一架梯子斜靠在左墻時(shí),梯子底端到左墻角的距離為0.7米,頂端距離地面2.4.如果保持梯子底端位置不動(dòng),將梯子斜靠在右墻時(shí),頂端距離地面2米,則小巷的寬度為( )

A.0.7B.1.5C.2.2D.2.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,直線:軸相交于B,與軸相交于點(diǎn)A.直線:經(jīng)過原點(diǎn),并且與直線相交于C點(diǎn).

(1)ΔOBC的面積;

(2)如圖2,在軸上有一動(dòng)點(diǎn)E,連接CE.CE+BE是否有最小值,如果有,求出相應(yīng)的點(diǎn)E的坐標(biāo)及CE+BE的最小值;如果沒有,請(qǐng)說明理由;

(3)如圖3,在(2)的條件下,以CE為一邊作等邊ΔCDE,D點(diǎn)正好落在軸上.ΔDCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角度為(0°≤≤360),記旋轉(zhuǎn)后的三角形為ΔDCE′,點(diǎn)C,E的對(duì)稱點(diǎn)分別為C′E′.在旋轉(zhuǎn)過程中,設(shè)C′E′所在的直線與直線相交于點(diǎn)M,與軸正半軸相交于點(diǎn)N.當(dāng)ΔOMN為等腰三角形時(shí),求線段ON的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADCBD=DC

C.B=C,BAD=CAD D. B=C,BD=DC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCDAD沿折痕AE折疊,使點(diǎn)D落在BC上的F處,已知AB6,ABF的面積為24,則EC等于( 。

A.2B.C.4D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,超速行駛是引發(fā)交通事故的主要原因之一,所以規(guī)定以下情境中的速度不得超過15m/s在一條筆直公路BD的上方A處有一探測(cè)儀,如平面幾何圖,AD=24m,D=90°,第一次探測(cè)到一輛轎車從B點(diǎn)勻速向D點(diǎn)行駛,測(cè)得∠ABD=31°,2秒后到達(dá)C點(diǎn),測(cè)得∠ACD=50°tan31°≈0.6,tan50°≈1.2,結(jié)果精確到1m.

1)求B,C的距離.

2)通過計(jì)算,判斷此轎車是否超速.

查看答案和解析>>

同步練習(xí)冊(cè)答案