如圖,將矩形ABCD繞點(diǎn)A旋轉(zhuǎn)至矩形AB′C′D′位置,此時(shí)AC的中點(diǎn)恰好與D點(diǎn)重合,AB交CD于點(diǎn)E.若AB=6,則△AEC的面積為( 。
A.12 B.4 C.8 D.6
B【考點(diǎn)】旋轉(zhuǎn)的性質(zhì).
【專題】推理填空題.
【分析】根據(jù)旋轉(zhuǎn)后AC的中點(diǎn)恰好與D點(diǎn)重合,利用旋轉(zhuǎn)的性質(zhì)得到直角三角形ACD中,∠ACD=30°,再由旋轉(zhuǎn)后矩形與已知矩形全等及矩形的性質(zhì)得到∠DAE為30°,進(jìn)而得到∠EAC=∠ECA,利用等角對(duì)等邊得到AE=CE,設(shè)AE=CE=x,表示出AD與DE,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出EC的長,即可求出三角形AEC面積.
【解答】解:∵旋轉(zhuǎn)后AC的中點(diǎn)恰好與D點(diǎn)重合,即AD=AC′=AC,
∴在Rt△ACD中,∠ACD=30°,即∠DAC=60°,
∴∠DAD′=60°,
∴∠DAE=30°,
∴∠EAC=∠ACD=30°,
∴AE=CE,
在Rt△ADE中,設(shè)AE=EC=x,則有DE=DC﹣EC=AB﹣EC=6﹣x,AD=×6=2,
根據(jù)勾股定理得:x2=(6﹣x)2+(2)2,
解得:x=4,
∴EC=4,
則S△AEC=EC•AD=4.
故選:B.
【點(diǎn)評(píng)】此題考查了旋轉(zhuǎn)的性質(zhì),含30度直角三角形的性質(zhì),勾股定理,以及等腰三角形的性質(zhì),熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,一次函數(shù)y1=x+b與一次函數(shù)y2=kx+4的圖象交于點(diǎn)P(1,3),則關(guān)于x的不等式x+b>kx+4的解集是( 。
A.x>﹣2 B.x>0 C.x>1 D.x<1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,反比例函數(shù)y=﹣的圖象與直線y=﹣x的交點(diǎn)為A,B,過點(diǎn)A作y軸的平行線與過點(diǎn)B作x軸的平行線相交于點(diǎn)C,則△ABC的面積為( )
A.8 B.6 C.4 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列是三種化合物的結(jié)構(gòu)式及分子式,
結(jié)構(gòu)式
分子式
(1)請(qǐng)按其規(guī)律,寫出后一種化合物的分子式 .
(2)每一種化合物的分子式中H的個(gè)數(shù)m是否是C的個(gè)數(shù)n的函數(shù)?如果是,請(qǐng)寫出關(guān)系式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com