已知在△ABC中,AC=3,BC=4,∠C=90°,建立以點(diǎn)A為坐標(biāo)原點(diǎn),使AB落在x軸的負(fù)半軸上的平面直角坐標(biāo)系,則點(diǎn)C的坐標(biāo)為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式數(shù)學(xué)公式
D
分析:利用勾股定理列式求出AB的長,再過點(diǎn)C作CD⊥AB于D,利用△ACD和△ABC相似,利用相似三角形對應(yīng)邊成比例列式求出AD、CD的長,再分點(diǎn)C在第二象限和第三象限兩種情況討論求解即可.
解答:解:如圖,∵AC=3,BC=4,∠C=90°,
∴AB===5,
過點(diǎn)C作CD⊥AB于D,
則△ACD∽△ABC,
==,
==,
解得CD=,AD=
當(dāng)點(diǎn)C在第二象限時(shí),點(diǎn)C的坐標(biāo)為(-,),
當(dāng)點(diǎn)C在第三象限時(shí),點(diǎn)C的坐標(biāo)為(-,-),
綜上所述,點(diǎn)C的坐標(biāo)為:(-,)或(-,-).
故選D.
點(diǎn)評:本題考查了勾股定理,坐標(biāo)與圖形性質(zhì),相似三角形對應(yīng)邊成比例的性質(zhì),求出點(diǎn)C的橫坐標(biāo)與縱坐標(biāo)的長度是解題的關(guān)鍵,作出圖形更形象直觀.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,AB=AC=5,BC=8,點(diǎn)G為重心,那么GA=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知在△ABC中,∠A=(2x+10)°,∠B=(3x)°,∠ACD是△ABC的一個(gè)外角,且∠ACD=(6x-10)°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知在△ABC中,∠BAC=90°,AC=4,BC=4
5
,若點(diǎn)D、E、F分別為AB、BC、AC邊的中點(diǎn),點(diǎn)P為AB邊上的一個(gè)動(dòng)點(diǎn)(且不與點(diǎn)A、B重合),PQ∥AC,且交BC于點(diǎn)Q,以PQ為一邊在點(diǎn)B的異側(cè)作正方形PQMN,設(shè)正方形PQMN與矩形ADEF的公共部分的面積為S,BP的長為x,試求S與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在△ABC中,∠BAC為直角,AB=AC,D為AC上一點(diǎn),CE⊥BD于E.若BD平分∠ABC.
求證:CE=
12
BD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線交于點(diǎn)P.
(1)當(dāng)∠A=70°時(shí),求∠BPC的度數(shù);
(2)當(dāng)∠A=112°時(shí),求∠BPC的度數(shù);
(3)當(dāng)∠A=α?xí)r,求∠BPC的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案