【題目】如圖,在扇形AOB中,∠AOB=90°,半徑OA=4.將扇形AOB沿過點B的直線折疊,點O恰好落在弧AB上點C處,折痕交OA于點D,則圖中陰影部分的面積為_______

【答案】

【解析】

首先連接OC,由折疊的性質(zhì),可得CD=CDBC=BO,OB=OC,則可得△OBC是等邊三角形,繼而求得OD的長,即可求得△OBD與△BCD的面積,又在扇形OAB中,∠AOB=90°,半徑OA=4,即可求得扇形OAB的面積,繼而求得陰影部分面積.

連接OCBD于點E


在扇形AOB中,∠AOB=90°,半徑OA=4

,
根據(jù)折疊的性質(zhì),CD=DO,BC=BOOB=OC,
OB=OC=BC,
即△OBC是等邊三角形,
∴∠CBO=60°,

∴∠DBO=CBO=30°

∵∠AOB=90°,
OD=OBtanDBO,

,

∴整個陰影部分的面積為:

故答案為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形上取兩點(左邊),以為邊作等邊三角形,使頂點上,分別交于點

1)求的邊長;

2)在不添加輔助線的情況下,當不重合時,從圖中找出一對相似三角形,并說明理由;

3)若的邊在線段上移動.試猜想:有何數(shù)量關(guān)系?并證明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的部分對應值如表:

下列結(jié)論:拋物線的開口向上;②拋物線的對稱軸為直線;③當時,;④拋物線與軸的兩個交點間的距離是;⑤若是拋物線上兩點,則,其中正確的個數(shù)是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著新學校建成越來越多,絕大部分孩子已能就近入學,某數(shù)學學習興趣小組對八年級一班學生上學的交通方式進行問卷調(diào)查,并將調(diào)查結(jié)果畫出下列兩個不完整的統(tǒng)計圖(圖1、圖2).請根據(jù)圖中的信息完成下列問題.

1)該班參與本次問卷調(diào)查的學生共有   人;

2)請補全圖1中的條形統(tǒng)計圖;

3)在圖2的扇形統(tǒng)計圖中,騎車所在扇形的圓心角的度數(shù)是   度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=3BC=1,點D是斜邊上一點,且AD=4BD

(1)tanBCD的值;

(2)過點B的⊙O與邊AC相切,切點為AC的中點E,⊙O與直線BC的另一個交點為F

()求⊙O的半徑;

() 連接AF,試探究AFCD的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三個頂點坐標分別為A2,3),B3,1),C54).

1)畫出△ABC關(guān)于x軸對稱的△A1B1C1;

2)以點P1,﹣1)為位似中心,在如圖所示的網(wǎng)格中畫出△A1B1C1的位似圖形△A2B2C2,使△A2B2C2與△A1B1C1的相似比為21;

3)畫出△ABC繞點C逆時針旋轉(zhuǎn)90°的△ABC′,并寫出線段BC掃過的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點AB的坐標分別為(1,4)和(3,0),點Cy軸上的一個動點,且A,B,C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小盛和麗麗在學完了有理數(shù)后做起了數(shù)學游戲

1)規(guī)定用四個不重復(絕對值小于)的正整數(shù)通過加法運算后結(jié)果等于

小盛:;麗麗:,問是否還有其他的算式,如果有請寫出來一個,如果沒有,請簡單說明理由;

2)規(guī)定用四個不重復(絕對值小)的整數(shù)通過加法運算后結(jié)果等

小盛:;麗麗:;請根據(jù)要求再寫出一個與他們不同的算式.

3)用(2)中小盛和麗麗的算式繼續(xù)排列下去組成一個數(shù)列,使相鄰的四個數(shù)的和都等于,小盛:,,

麗麗:,,,

______;_______.求麗麗寫出的數(shù)列的前項的和.

查看答案和解析>>

同步練習冊答案