【題目】行駛中的汽車,在剎車后由于慣性的原因,還要繼續(xù)向前滑行一段距離才能停住,這段距離稱為“剎車距離”.為了測定某種型號(hào)汽車的剎車性能,對(duì)這種汽車的剎車距離進(jìn)行測試,測得的數(shù)據(jù)如下表:
剎車時(shí)車速(千米/時(shí)) | 0 | 5 | 10 | 15 | 20 | 25 | 30 |
剎車距離(米) | 0 | 0.1 | 0.3 | 0.6 | 1 | 1.6 | 2.1 |
(1)在如圖所示的直角坐標(biāo)系中,以剎車時(shí)車速為橫坐標(biāo),以剎車距離為縱坐標(biāo),描出這些數(shù)據(jù)所表示的點(diǎn),并用平滑的曲線連結(jié)這些點(diǎn),得到某函數(shù)的大致圖象;
(2)測量必然存在誤差,通過觀察圖象估計(jì)函數(shù)的類型,求出一個(gè)大致滿足這些數(shù)據(jù)的函數(shù)表達(dá)式;
(3)一輛該型號(hào)汽車在高速公路上發(fā)生交通事故,現(xiàn)場測得剎車距離約為40米,已知這條高速公路限速100千米/時(shí),請(qǐng)根據(jù)你確定的函數(shù)表達(dá)式,通過計(jì)算判斷在事故發(fā)生時(shí),汽車是否超速行駛.
【答案】(1)見解析;(2) ;(3)汽車已超速行駛.
【解析】
(1)依題意描點(diǎn)連線即可.
(2)設(shè)拋物線為,解出a,b即可.
(3)當(dāng)y=100時(shí),代入函數(shù)關(guān)系式解出x的合乎題意的值.
(1)如圖所示;
(2)該圖象可能為拋物線,猜想該函數(shù)為二次函數(shù).
∵圖象經(jīng)過原點(diǎn),
∴設(shè)二次函數(shù)的表達(dá)式為.
選取(20,1)和(10,0.3)代入表達(dá)式,得
解得
∴二次函數(shù)的表達(dá)式為.
代入各點(diǎn)檢驗(yàn),只有(25,1.6)略有誤差,其它點(diǎn)均滿足所求表達(dá)式.
(3)∵當(dāng)x=100時(shí),y=21<40,
∴汽車已超速行駛.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小鵬學(xué)完解直角三角形知識(shí)后,給同桌小艷出了一道題:“如圖所示,把一張長方形卡片ABCD放在每格寬度都為6mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上,已知a=36°,求長方形卡片的周長.”請(qǐng)你幫小艷解答這道題.(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象相交于點(diǎn)A(2,3)和點(diǎn)B,與x軸相交于點(diǎn)C(8,0).
(1)求這兩個(gè)函數(shù)的解析式;
(2)當(dāng)x取何值時(shí),y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點(diǎn),作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作圖并填空
如圖,在Rt△ABC,∠BAC=90°,AD⊥BC于D,在②③圖中,MN=AB,∠MNE=∠B,現(xiàn)要以②③圖為基礎(chǔ),在射線NE上確定一點(diǎn)P,構(gòu)造出一個(gè)△MNP與①圖中某一個(gè)三角形全等.
(1)用邊長限制P點(diǎn),畫法:_____,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
(2)用直角限制點(diǎn)P,畫法:_______,可根據(jù)SAS,AAS,ASA,HL中的______得到______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△OAB中,OA=OB,OA⊥OB.在△OCD中,OC=OD,OC⊥OD.
(1)如圖1,若A,O,D三點(diǎn)在同一條直線上,求證:S△AOC=S△BOD;
(2)如圖2,若A,O,D三點(diǎn)不在同一條直線上,△OAB和△OCD不重疊.則S△AOC=S△BOD是否仍成立?若成立,請(qǐng)予以證明;若不成立,也請(qǐng)說明理由.
(3)若A,O,D三點(diǎn)不在同一條直線上,△OAB和△OCD有部分重疊,經(jīng)過畫圖猜想,請(qǐng)直接寫出 S△AOC和S△BOD的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,反比例函數(shù)y=﹣在第二象限的圖象上有一點(diǎn)A,過點(diǎn)A作AB⊥x軸于點(diǎn)B,則S△AOB=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點(diǎn),與x軸交于A點(diǎn).
(1)寫出點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)P′的坐標(biāo);
(2)分別求出這兩個(gè)函數(shù)的表達(dá)式;
(3)求∠P′AO的正切值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為R,弦AB,CD互相垂直,連接AD,BC.
(1)求證:AD2+BC2=4R2;
(2)若弦AD,BC的長是方程x2-6x+5=0的兩個(gè)根(AD>BC),求⊙O的半徑及點(diǎn)O到AD的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com