【題目】計算:

1x2+2x48

22x24x50

3sin60°+cos230°tan45°

43tan60°﹣(﹣10+

【答案】1x1=﹣8x26;(2x1,x2;(3;(41

【解析】

1)整理為一元二次方程的一般式,再利用因式分解法求解可得;
2)利用公式法求解可得;
3)先將特殊銳角的三角函數(shù)值代入,再根據(jù)實數(shù)的混合運算順序和運算法則計算可得;
4)根據(jù)實數(shù)的混合運算順序和運算法則計算可得.

解:(1)∵x2+2x480,

∴(x+8)(x6)=0,

x+80x60,

解得x1=﹣8,x26;

2)∵a2,b=﹣4c=﹣5,

∴△=(﹣424×2×5)=560

,

x1,x2;;

3)原式=

;

4)原式=231+2

1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲,乙兩人分別從,兩地相向而行,甲先走3分鐘后乙才開始行走,甲到達(dá)地后立即停止,乙到達(dá)地后立即以另一速度返回地,在整個行駛的過程中,兩人保持各自速度勻速行走,甲,乙兩人之間的距離(米)與乙出發(fā)的時間(分鐘)的函數(shù)關(guān)系如圖所示.當(dāng)甲到達(dá)地時,則乙距離地的時間還需要________分鐘.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點,二次函數(shù)yx2+bx+c的圖象與x軸交于AB兩點,與y軸的負(fù)半軸相交于點C(如圖),點C的坐標(biāo)為(0,﹣3),且BOCO

1)求出B點坐標(biāo)和這個二次函數(shù)的解析式;

2)求△ABC的面積;

3)設(shè)這個二次函數(shù)的圖象的頂點為M,求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AE⊥BC于點E,延長BC至點F使CF=BE,連結(jié)AF,DE,DF.

(1)求證:四邊形AEFD是矩形;

(2)若AB=6,DE=8,BF=10,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,MBC上一點,MEAM,MECD于點F,交AD的延長線于點E,若AB4BM2,則DEF的面積為( 。

A.9B.8C.15D.14.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組在探究矩形的折紙問題時,將一塊直角三角板的直角頂點繞矩形ABCD(ABBC)的對角線的交點O旋轉(zhuǎn)(①→②→③),圖中的M、N分別為直角三角形的直角邊與矩形ABCD的邊CDBC的交點.

(1)該學(xué)習(xí)小組成員意外的發(fā)現(xiàn)圖(三角板一邊與CC重合),BN、CN、CD這三條線段之間存在一定的數(shù)量關(guān)系:CN2BN2+CD2,請你對這名成員在圖中發(fā)現(xiàn)的結(jié)論說明理由;

(2)在圖(三角板一直角邊與OD重合),試探究圖BN、CNCD這三條線段之間的數(shù)量關(guān)系,直接寫出你的結(jié)論.

(3)試探究圖BN、CNCM、DM這四條線段之間的數(shù)量關(guān)系,寫出你的結(jié)論,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過原點的直線與反比例函數(shù)的圖象交于兩點,點在第一象限。點軸正半軸上,連結(jié)交反比例函數(shù)圖象于點的平分線,過點的垂線,垂足為,連結(jié)。若,的面積為6,則的值為________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面8m時,水面寬AB12m.當(dāng)水面上升6m時達(dá)到警戒水位,此時拱橋內(nèi)的水面寬度是多少m

下面給出了解決這個問題的兩種方法,請補(bǔ)充完整:

方法一:如圖1,以點A為原點,AB所在直線為x軸,建立平面直角坐標(biāo)系xOy,

此時點B的坐標(biāo)為(   ,   ),拋物線的頂點坐標(biāo)為(   ,   ),

可求這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y6時,求出此時自變量x的取值,即可解決這個問題.

方法二:如圖2,以拋物線頂點為原點,對稱軸為y軸,建立平面直角坐標(biāo)系xOy

這時這條拋物線所表示的二次函數(shù)的解析式為   

當(dāng)y   時,求出此時自變量x的取值為   ,即可解決這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2;將△ABC繞點順時針方向旋轉(zhuǎn)n度后得到△EDC,此時點DAB邊上,斜邊DEAC邊于點F,求n的大小和圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊答案