【題目】如圖,在平面直角坐標(biāo)系中,直線y=kx(k≠0)經(jīng)過點(m,m)(m<0).線段BC的兩個端點分別在x軸與直線y=kx上滑動(B、C均與原點O不重合),且BC=.分別作BP⊥x軸,CP⊥直線y=kx,直線BP、CP交于點P.經(jīng)探究,在整個滑動過程中,O、P兩點間的距離為定值,則該距離為_____.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于A(﹣3,0)和B(1,0)兩點,交y軸于點C(0,3),點C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象過點B、D.
(1)請直接寫出D點的坐標(biāo).
(2)求二次函數(shù)的解析式.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AN∥CB,B、N在AC同側(cè),BM、CN交于點D,AC=BC,且∠A+∠MDN=180°.
(1)如圖1,當(dāng)∠NAC=90°,求證:BM=CN;
(2)如圖2,當(dāng)∠NAC為銳角時,試判斷BM與CN關(guān)系并證明;
(3)如圖3,在(1)的條件下,且∠MBC=30°,一動點E在線段BM上運(yùn)動過程中,連CE,將線段CE繞點C順時針旋轉(zhuǎn)90°至CF,取BE中點P,連AP、FP.設(shè)四邊形APFC面積為S,若AM=﹣1,MC=1,在E點運(yùn)動過程中,請寫出S的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在研究相似問題時,甲、乙同學(xué)的觀點如下:
甲:將邊長為3、4、5的三角形按圖1的方式向外擴(kuò)張,得到新三角形,它們的對應(yīng)邊間距為1,則新三角形與原三角形相似.
乙:將鄰邊為3和5的矩形按圖2的方式向外擴(kuò)張,得到新的矩形,它們的對應(yīng)邊間距均為1,則新矩形與原矩形不相似.
對于兩人的觀點,下列說法正確的是( )
A. 兩人都對 B. 兩人都不對 C. 甲對,乙不對 D. 甲不對,乙對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC是等腰直角三角形,點E為線段AC上一點(E點不和A、C兩點重合),連接BE并延長BE,在BE的延長線上找一點D,使AD⊥CD,點F為線段AD上一點(F點不和A、D兩點重合),連接CF,交BD于點G
(1)如圖1,若AB=,CD=1,F是線段AD的中點,求CF;
(2)如圖2,若點E是線段AC中點,CF⊥BD,求證:CF+DE=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
用配方法求該拋物線的對稱軸,并說明:當(dāng)取何值時,的值隨值的增大而減?
將二次函數(shù)的圖象經(jīng)過怎樣的平移能得到的圖象?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.
(1)求證:BN平分∠ABE;
(2)若BD=1,連結(jié)DN,當(dāng)四邊形DNBC為平行四邊形時,求線段BC的長;
(3)如圖②,若點F為AB的中點,連結(jié)FN、FM,求證:△MFN∽△BDC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】你吃過拉面嗎?實際上在做拉面的過程中就滲透著數(shù)學(xué)知識:一定體積的面團(tuán)做成拉面,面條的總長度是面條的粗細(xì)(橫截面積)的反比例函數(shù),其圖象如圖所示.
寫出與的函數(shù)關(guān)系式;
求當(dāng)面條粗總長度為米時,面條的橫截面積是多少?
求當(dāng)要求面條的橫截面積不少于時,面條的總長度最多為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com