【題目】已知關(guān)于的方程有唯一實(shí)數(shù)解,且反比例函數(shù)的圖象在每個(gè)象限內(nèi)隨的增大而增大,那么反比例函數(shù)的關(guān)系式為( )
A. B. C. D.
【答案】D
【解析】
關(guān)于x的方程有唯一的實(shí)數(shù)解,則判別式等于0,據(jù)此即可求得b的值,然后根據(jù)反比例函數(shù)的圖象在每個(gè)象限內(nèi)y隨x的增大而增大,則比例系數(shù)1+b<0,則b的值可以確定,從而確定函數(shù)的解析式.
關(guān)于x的方程(x+1)2+(x-b)2=2化成一般形式是:2x2+(2-2b)x+(b2-1)=0,
△=(2-2b)2-8(b2-1)=-4(b+3)(b-1)=0,
解得:b=-3或1,
∵反比例函數(shù)y=的圖象在每個(gè)象限內(nèi)y隨x的增大而增大,
∴1+b<0,
∴b<-1,
∴b=-3,
則反比例函數(shù)的解析式是:y=,即y=-,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中.
(1)作出△ABC關(guān)于軸對(duì)稱的,并寫出三個(gè)頂點(diǎn)的坐標(biāo): ( 。( 。( 。
(2)直接寫出△ABC的面積為 ;
(3)在軸上畫點(diǎn)P,使PA+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E、F分別在BC、CD上,將△ABE沿AE折疊,使點(diǎn)B落在AC上的點(diǎn)Bˊ處,又將△CEF沿EF折疊,使點(diǎn)C落在射線EBˊ與AD的交點(diǎn)Cˊ處,則的值( 。
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開設(shè)以下體育課外活動(dòng)項(xiàng)目:A:籃球 B:乒乓球C:羽毛球 D:足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問題:
(1)這次被調(diào)查的學(xué)生共有 人;
(2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;
(3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠1=∠2,AC=AD,要使△ABC≌△AED,還需添加一個(gè)條件,那么在①AB=AE,②BC=ED,③∠C=∠D,④∠B=∠E,這四個(gè)關(guān)系中可以選擇的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料
勾股定理神秘而美妙,它的證法多種多樣,下面是教材中介紹的一種拼圖證明勾股定理的方法.
先做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊分別為a,b,斜邊為c,然后按圖1的方法將它們擺成正方形.
由圖1可以得到,
整理,得.
所以.
如果把圖1中的四個(gè)全等的直角三角形擺成圖2所示的正方形,
請(qǐng)你參照上述證明勾股定理的方法,完成下面的填空:
由圖2可以得到 ,
整理,得 ,
所以 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)是4,點(diǎn)E是AB邊上一動(dòng)點(diǎn),連接CE,過點(diǎn)B作BG⊥CE于點(diǎn)G,點(diǎn)P是AB邊上另一動(dòng)點(diǎn),則PD+PG的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AC的表達(dá)式為,直線與直線相交于點(diǎn),有一動(dòng)點(diǎn) 在線段和線段上運(yùn)動(dòng).
(1)求直線的表達(dá)式.
(2)求的面積.
(3)是否存在點(diǎn)M,使的面積是的面積的?若存在請(qǐng)直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com