如圖,小明為了測量一鐵塔的高度CD,他先在A處測得塔頂C的仰角為30°,再向塔的方向直行40米到達(dá)B處,又測得塔頂C的仰角為60°,請你幫助小明計算出這座鐵塔的高度.(小明的身高忽略不計,結(jié)果精確到0.1米,參考數(shù)據(jù):
2
≈1.41
,
3
≈1.73
5
≈2.24

∵∠CBD=60°,∠CAB=30°,
∴∠ACB=30°.
∴AB=BC=40.(2分)
在Rt△BDC中,sin60°=
CD
BC

∴CD=BC•sin60°=40×
3
2
=20
3
≈34.6(米).(5分)
答:這座鐵塔的高度是34.6米.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一天,我國一漁政船航行到A處時,發(fā)現(xiàn)正東方向的我領(lǐng)海區(qū)域B處有一可疑漁船,正在以12海里∕小時的速度向西北方向航行,我漁政船立即沿北偏東60°方向航行,1.5小時后,在我領(lǐng)海區(qū)域的C處截獲可疑漁船.問我漁政船的航行路程是多少海里?(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知A、B兩點,如果A對B的俯角為α,那么B對A的仰角為( 。
A.αB.90°-αC.90°+αD.180°-α

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABO中,斜邊AB=1.若OCBA,∠AOC=36°,則( 。
A.點B到AO的距離為sin54°
B.點B到AO的距離為tan36°
C.點A到OC的距離為sin36°sin54°
D.點A到OC的距離為cos36°sin54°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

為了測量河對岸大樹AB的高度,九年級(1)班數(shù)學(xué)興趣小組設(shè)計了如圖所示的測量方案,并得到如下數(shù)據(jù):
(1)小明在大樹底部點B的正對岸點C處,測得仰角∠ACB=30°;
(2)小紅沿河岸測得DC=30米,∠BDC=45°.(點B、C、D在同一平面內(nèi),且CD⊥BC)
請你根據(jù)以上數(shù)據(jù),求大樹AB的高度.(結(jié)果保留一位小數(shù))
(參考數(shù)據(jù):
2
≈1.414,
3
≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知ABCD是正方形,以CD為一邊向CD兩旁作等邊三角形PCD和等邊三角形QCD,那么tan∠PQB的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,佳妮發(fā)現(xiàn)教學(xué)樓道上有一拖把AB與地面成15°的角斜靠在欄桿上,嚴(yán)重影響了同學(xué)的行走安全,她自覺地將拖把挪到A′B′位置,使它與地面所成角為75°,如果拖把總長為2米,求佳妮拓寬了行走通道多少米?(參考數(shù)據(jù):sin15°=0.26,cos15°=0.97,tan15°=0.27cos75°=0.26)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知梯形ABCD中,ADBC,∠B=30°,∠C=60°,AD=4,AB=3
3
,則下底BC的長是(  )
A.8B.(4+3
3
C.10D.6
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC中,AE⊥BC于E,D為AB邊上一點,如果BD=2AD,CD=8,sin∠BCD=
3
4
,那么AE的值為(  )
A.3B.6C.7.2D.9

查看答案和解析>>

同步練習(xí)冊答案