【題目】閱讀下面內(nèi)容,并解答問題:
楊輝和他的一個數(shù)學問題
我國古代對代數(shù)的研究,特別是對方程的解法研究有著優(yōu)良的傳統(tǒng)并取得了重要成果.
楊輝,字謙光,錢塘(今浙江杭州)人,南宋杰出的數(shù)學家和數(shù)學教育家,楊輝一生留下了大量的著述,他著名的數(shù)學書共五種二十一卷,它們是:《詳解九章算法》12卷(1261年),《日用算法》2卷(1262年),《乘除通變本末》3卷(1274年,第3卷與他人合編),《田(楊輝,南宋數(shù)學家)畝比類乘除捷法》2卷(1275年),《續(xù)古摘奇算法》2卷(1275年,與他人合編),其中后三種為楊輝后期所著,一般稱之為《楊輝算法》.下面是楊輝在1275年提出的一個問題(選自楊輝所著《田畝比類乘除捷法》):
直田積(矩形面積)八百六十四步(平方步),只云闊(寬)不及長一十二步(寬比長少一十二步),問闊及長各幾步.
請你用學過的知識解決這個問題.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時,甲車到達B地后立即調(diào)頭,并保持原速度與乙車同向行駛,乙車到達A地后,繼續(xù)保持原速向遠離B的方向行駛,經(jīng)過一段時間后兩車同時到達C地,設兩車之間的距離為y(干米),甲車行駛的時間為x小時,y與x之間的函數(shù)圖象如圖所示,則當甲車重返A地時,乙車距離C地________千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年沈陽國際馬拉松賽事設有“馬拉松”(A),“半程馬拉松”(B),“10公里跑”(C),“迷你馬拉松”(D)四個項目,小明和小亮參加了該賽事的志愿者服務工作,組委會將志愿者隨機分配到四個項目組,被分配到每個項目組的機會是相同的.
(1)小明被分配到“馬拉松”(A)項目組的概率為 ;
(2)利用畫樹狀圖或列表法求小明和小亮被分配到同一個項目組進行志愿服務的概率.(項目名稱可用字母表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角三角形ABC中,∠ACB=90°,點H是△ABC的內(nèi)心,AH的延長線和三角形ABC的外接圓O相交于點D,連結(jié)DB.
(1)求證:DH=DB;
(2)過點D作BC的平行線交AC、AB的延長線分別于點E、F,已知CE=1,圓O的直徑為5.
①求證:EF為圓O的切線;
②求DF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,□ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動點(不與B點重合),作EF⊥AB于F,F(xiàn)E,DC的延長線交于點G,設BE=x,△DEF的面積為S.
(1)求證:△BEF∽△CEG;
(2)求用x表示S的函數(shù)表達式,并寫出x的取值范圍;
(3)當E點運動到何處時,S有最大值,最大值為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與探究
如圖,在平面直角坐標系中,已知拋物線與軸交于兩點(點在點的右側(cè)),與軸交于點,連接.
(1)求點三點的坐標和拋物線的對稱軸;
(2)點為拋物線對稱軸上一點,連接,,若,求點的坐標;
(3)已知點,若是拋物線上一個動點(其中),連接,,,求面積的最大值及此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形中,,,E是邊的中點,點P在邊上,設,若以點D為圓心,為半徑的與線段只有一個公共點,則所有滿足條件的x的取值范圍是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC是等腰直角三角形,∠A=90°,D是腰AC上的一個動點,過點C作CE⊥BD,交BD的延長線于點E,如圖①.
(1)求證:ADCD=BDDE;
(2)若BD是邊AC的中線,如圖②,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是∠AOB內(nèi)任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )
A. 140° B. 100° C. 50° D. 40°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com