(2009•淄博)如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長是2.O為坐標(biāo)原點(diǎn),點(diǎn)A在x的正半軸上,點(diǎn)C在y的正半軸上.一條拋物線經(jīng)過A點(diǎn),頂點(diǎn)D是OC的中點(diǎn).
(1)求拋物線的表達(dá)式;
(2)正方形OABC的對角線OB與拋物線交于E點(diǎn),線段FG過點(diǎn)E與x軸垂直,分別交x軸和線段BC于F,G點(diǎn),試比較線段OE與EG的長度;
(3)點(diǎn)H是拋物線上在正方形內(nèi)部的任意一點(diǎn),線段IJ過點(diǎn)H與x軸垂直,分別交x軸和線段BC于I、J點(diǎn),點(diǎn)K在y軸的正半軸上,且OK=OH,請證明△OHI≌△JKC.
【答案】分析:(1)解本題時可先設(shè)出二次函數(shù)的方程,然后根據(jù)所給的條件可得出拋物線上的兩點(diǎn),代入函數(shù)解析式計算即可.
(2)本題根據(jù)觀察可知OB的表達(dá)式為:y=x,由此可設(shè)點(diǎn)E的坐標(biāo)為(m,m),再根據(jù)點(diǎn)E在拋物線上,將E點(diǎn)的坐標(biāo)代入拋物線解析式,化簡即可得出E點(diǎn)的坐標(biāo).根據(jù)兩點(diǎn)之間的距離公式即可得出OE的長,再根據(jù)EG=GF-EF即可得出EG的長,比較即可得出答案.
(3)本題可先設(shè)出H點(diǎn)的坐標(biāo),由H點(diǎn)在拋物線上列出關(guān)于H點(diǎn)坐標(biāo)的方程,再根據(jù)勾股定理OH2=OI2+HI2得出OH關(guān)于H點(diǎn)坐標(biāo)的式子,根據(jù)OK=OH可得出CK的長,證明CK=IH,最后根據(jù)三角形相似定理HL即可證出兩三角形全等.
解答:(1)解:由題意,設(shè)拋物線的解析式為:y=ax2+b.
將點(diǎn)D的坐標(biāo)(0,1),點(diǎn)A的坐標(biāo)(2,0)代入,
得:a=-,b=1.
所求拋物線的解析式為y=-x2+1.

(2)解:由于點(diǎn)E在正方形的對角線OB上,又在拋物線上,
設(shè)點(diǎn)E的坐標(biāo)為(m,m)(0<m<2),
則m=-m2+1.
解得m1=2-2,m2=-2-2(舍去).
所以O(shè)E=m=4-2
所以EG=GF-EF=2-m=2-(2-2)=4-2
所以O(shè)E=EG.

(3)證明:設(shè)點(diǎn)H的坐標(biāo)為(p,q)(0<p<2,0<q<2),
由于點(diǎn)H在拋物線y=-x2+1上,
所以q=-p2+1,
即p2=4-4q.
因?yàn)镺H2=OI2+HI2=p2+q2=4-4q+q2=(2-q)2
所以O(shè)H=2-q.
所以O(shè)K=OH=2-q.
所以CK=2-(2-q)=q=IH.
因?yàn)镃J=OI,∠OIH=∠JCK=90°,
所以△OHI≌△JKC.
點(diǎn)評:本題考查了二次函數(shù)的應(yīng)用.解此類題目時要注意學(xué)會假設(shè)未知數(shù),結(jié)合勾股定理和三角形相似的性質(zhì)來解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(02)(解析版) 題型:選擇題

(2009•淄博)如圖,直線y=kx+b經(jīng)過A(-2,-1)和B(-3,0)兩點(diǎn),利用函數(shù)圖象判斷不等式<kx+b的解集為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(02)(解析版) 題型:選擇題

(2009•淄博)如圖,直線y=kx+b經(jīng)過A(-2,-1)和B(-3,0)兩點(diǎn),利用函數(shù)圖象判斷不等式<kx+b的解集為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)三輪復(fù)習(xí)每天30分綜合訓(xùn)練(18)(解析版) 題型:選擇題

(2009•淄博)如圖,直線y=kx+b經(jīng)過A(-2,-1)和B(-3,0)兩點(diǎn),利用函數(shù)圖象判斷不等式<kx+b的解集為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年山東省淄博市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•淄博)如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長是2.O為坐標(biāo)原點(diǎn),點(diǎn)A在x的正半軸上,點(diǎn)C在y的正半軸上.一條拋物線經(jīng)過A點(diǎn),頂點(diǎn)D是OC的中點(diǎn).
(1)求拋物線的表達(dá)式;
(2)正方形OABC的對角線OB與拋物線交于E點(diǎn),線段FG過點(diǎn)E與x軸垂直,分別交x軸和線段BC于F,G點(diǎn),試比較線段OE與EG的長度;
(3)點(diǎn)H是拋物線上在正方形內(nèi)部的任意一點(diǎn),線段IJ過點(diǎn)H與x軸垂直,分別交x軸和線段BC于I、J點(diǎn),點(diǎn)K在y軸的正半軸上,且OK=OH,請證明△OHI≌△JKC.

查看答案和解析>>

同步練習(xí)冊答案