【題目】如圖是一座人行天橋的示意圖,天橋的高度是10米,CBDB , 坡面AC的傾斜角為45°為了方便行人推車過天橋,市政部門決定降低坡度,使新坡面DC的坡度為i= :3若新坡角下需留3米寬的人行道,問離原坡角(A點處)10米的建筑物是否需要拆除?(參考數(shù)據(jù): ≈1.414, ≈1.732)

【答案】解:需要拆除,理由為:
CBAB , ∠CAB=45°,
∴△ABC為等腰直角三角形,
AB=BC=10米,
RtBCD中,新坡面DC的坡度為i= :3,即∠CDB=30°,
DC=2BC=20米,BD= 米,
AD=BD-AB=(10 -10)米≈7.32米,
∵3+7.32=10.32>10,
∴需要拆除
【解析】需要拆除,理由為:根據(jù)題意得到三角形ABC為等腰直角三角形,求出AB的長,在直角三角形BCD中,根據(jù)新坡面的坡度求出∠BDC的度數(shù)為30,利用30度所對的直角邊等于斜邊的一半求出DC的長,再利用勾股定理求出DB的長,由DB-AB求出AD的長,由AD+3與10比較即可得到結(jié)果

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,OP∠MON的平分線,請你利用該圖形畫一對以OP所在直線為對稱軸的全等三角形,并將添加的全等條件標注在圖上.

請你參考這個作全等三角形的方法,解答下列問題:

(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);

(2)在(1)的條件下,請判斷FEFD之間的數(shù)量關系,并說明理由;

(3)如圖3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小敏同學想測量一棵大樹的高度她站在B處仰望樹頂,測得仰角為30°,再往大樹的方向前進4m , 測得仰角為60°,已知小敏同學身高(AB)為1.6m , 則這棵樹的高度為( 。ńY(jié)果精確到0.1m ≈1.73)

A.3.5m
B.3.6m
C.4.3m
D.5.1m
.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC.BD相交于點O , 過點OOEACADE , 若AB=6,AD=8,求sinOEA的值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠A=90°,角平分線AE、中線AD、高線AH的大小關系是( 。
A.AHAEAD
B.AHADAE
C.AHADAE
D.AHAEAD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在△ACB中,∠ACB=90゜,CDAB于D.

(1)求證:∠ACD=∠B;
(2)若AF平分∠CAB分別交CDBCE、F , 求證:∠CEF=∠CFE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長線上的一點,BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB切⊙O于點B,OA=2,∠OAB=30°,弦BC∥OA,劣弧 的弧長為 . (結(jié)果保留π)

查看答案和解析>>

同步練習冊答案