【題目】如圖,已知直角三角形ACB,AC=3,BC=4,過(guò)直角頂點(diǎn)C作CA1⊥AB,垂足為A1,再過(guò)A1作A1C1⊥BC,垂足為C1;過(guò)CA1作C1A2⊥AB,垂足為A2,再過(guò)A2作A2C2⊥BC,垂足為C2;…,這樣一直做下去,得到一組線(xiàn)段A1C1,C2A2,…,則線(xiàn)段AnCn=___.
【答案】3×
【解析】
利用勾股定理求得AB的長(zhǎng),即可得sinA=,在Rt△ACA 中C A= ACsinA=3× ,由∠A+∠AC A=90°、∠C AC+∠ACA=90°得∠A=∠ACC,從而得出AC=CASinA=3 ,同理得出,據(jù)此可得出規(guī)律
∵Rt△ABC中,AC=3,BC=4
∴AB=
∴ sinA=
∵CA⊥AB
∴在Rt△ACA中,CA= A Csin A=3×,
又∵∠A+∠ACA=90°,∠CAh+∠ACA,
∴∠A=∠ACC,
∴AC=CA. sin A=3,
同理可得,
∴ =3×,
故答案為: 3×
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D是AC邊上的中點(diǎn),連結(jié)BD,把△BDC′沿BD翻折,得到△,DC與AB交于點(diǎn)E,連結(jié),若AD=AC′=2,BD=3則點(diǎn)D到BC的距離為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,BA=BC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,BC的延長(zhǎng)線(xiàn)于⊙O的切線(xiàn)AF交于點(diǎn)F.
(1)求證:∠ABC=2∠CAF;
(2)若AC=2,CE:EB=1:4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明同學(xué)設(shè)計(jì)的“已知底邊及底邊上的高作等腰三角形”的尺規(guī)作圖的過(guò)程.
已知:如圖1,線(xiàn)段a和線(xiàn)段b.
求作:△ABC,使得AB=AC,BC=a,BC邊上的高為b.
作法:如圖2,
①作射線(xiàn)BM,并在射線(xiàn)BM上截取BC=a;
②作線(xiàn)段BC的垂直平分線(xiàn)PQ,PQ交BC于D;
③以D為圓心,b為半徑作圓,交PQ于A;
④連接AB和AC.
則△ABC就是所求作的圖形.
根據(jù)上述作圖過(guò)程,回答問(wèn)題:
(1)用直尺和圓規(guī),補(bǔ)全圖2中的圖形;
(2)完成下面的證明:
證明:由作圖可知BC=a,AD=b.
∵PQ為線(xiàn)段BC的垂直平分線(xiàn),點(diǎn)A在PQ上,
∴AB=AC(______)(填依據(jù)).
又∵AD在線(xiàn)段BC的垂直平分線(xiàn)PQ上,
∴AD⊥BC.
∴AD為BC邊上的高,且AD=b.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面直角坐標(biāo)系xOy中的動(dòng)點(diǎn)P和圖形N,給出如下定義:如果Q為圖形N上一個(gè)動(dòng)點(diǎn),P,Q兩點(diǎn)間距離的最大值為dmax,P,Q兩點(diǎn)間距離的最小值為dmin,我們把dmax+dmin的值叫點(diǎn)P和圖形N間的“和距離”,記作d(P,圖形N).
(1)如圖1,正方形ABCD的中心為點(diǎn)O,A(3,3).
①點(diǎn)O到線(xiàn)段AB的“和距離”d(O,線(xiàn)段AB)=______;
②設(shè)該正方形與y軸交于點(diǎn)E和F,點(diǎn)P在線(xiàn)段EF上,d(P,正方形ABCD)=7,求點(diǎn)P的坐標(biāo).
(2)如圖2,在(1)的條件下,過(guò)C,D兩點(diǎn)作射線(xiàn)CD,連接AC,點(diǎn)M是射線(xiàn)CD上的一個(gè)動(dòng)點(diǎn),如果6<d(M,線(xiàn)段AC)<6+3,直接寫(xiě)出M點(diǎn)橫坐標(biāo)t取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,A,B分別在射線(xiàn)OM,ON上,且∠MON為鈍角,現(xiàn)以線(xiàn)段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是△OAP,△OBQ,點(diǎn)C,D,E分別是OA,OB,AB的中點(diǎn).
(1)求證:四邊形OCED為平行四邊形;
(2)求證:△PCE≌△EDQ
(3)如圖2,延長(zhǎng)PC,QD交于點(diǎn)R.若∠MON=150°,求證:△ABR為等邊三角形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市為了節(jié)約用水,準(zhǔn)備實(shí)行自來(lái)水“階梯計(jì)費(fèi)”方式,用戶(hù)用水不超出基本用水量的部分享受基本價(jià)格,超出基本用水量的部分實(shí)行加價(jià)收費(fèi)為更好地決策,自來(lái)水公司在某街道隨機(jī)抽取了部分用戶(hù)的用水量數(shù)據(jù),按A,B,C,D,E五個(gè)區(qū)間進(jìn)行統(tǒng)計(jì),并將統(tǒng)計(jì)結(jié)果繪制如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你結(jié)合圖中所給信息解答下列問(wèn)題:(說(shuō)明:A:0﹣3噸;B:3﹣6噸;C:6﹣9噸;D:9﹣12噸;E:12﹣16噸,且每組數(shù)據(jù)區(qū)間包括右端的數(shù)但不包括左端的數(shù))
(1)這次隨機(jī)抽樣調(diào)查了_____用戶(hù)
(2)補(bǔ)全頻數(shù)分布直方圖,求扇形統(tǒng)計(jì)圖中B部分的圓心角的度數(shù);
(3)如果自來(lái)水公司將基本用水量定為每戶(hù)9噸,那么該街道1.8萬(wàn)用戶(hù)中約有多少用戶(hù)的用水全部享受基本用水量的價(jià)格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=x2+bx﹣3過(guò)點(diǎn)A(1,0),直線(xiàn)AD交拋物線(xiàn)于點(diǎn)D,點(diǎn)D的橫坐標(biāo)為﹣2,點(diǎn)P是線(xiàn)段AD上的動(dòng)點(diǎn).
(1)b= ,拋物線(xiàn)的頂點(diǎn)坐標(biāo)為 ;
(2)求直線(xiàn)AD的解析式;
(3)過(guò)點(diǎn)P的直線(xiàn)垂直于x軸,交拋物線(xiàn)于點(diǎn)Q,連接AQ,DQ,當(dāng)△ADQ的面積等于△ABD的面積的一半時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某數(shù)學(xué)興趣小組用高為1.2米的測(cè)角儀測(cè)量小樹(shù)AB的高度,如圖,在距AB一定距離的F處測(cè)得小樹(shù)頂部A的仰角為50°,沿BF方向行走3.5米到G處時(shí),又測(cè)得小樹(shù)頂部A的仰角為27°,求小樹(shù)AB的高度.(參考數(shù)據(jù):sin27°=0.45,cos27°=0.89,tan27°=0.5,sin50°=0.77,cos50°=0.64,tan50°=1.2)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com