【題目】如圖
(1)問題:如圖①,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),∠DPC=∠A=∠B=90°.
求證:ADBC=APBP.
(2)探究:如圖②,在四邊形ABCD中,點(diǎn)P為AB上一點(diǎn),當(dāng)∠DPC=∠A=∠B=θ,上述結(jié)論是否依然成立?說明理由.
(3)應(yīng)用:請利用(1)(2)獲得的經(jīng)驗(yàn)解決問題:
如圖③,在△ABD中,AB=6,AD=BD=5,點(diǎn)P以每秒1個(gè)單位長度的速度,由點(diǎn)A出發(fā),沿邊AB向點(diǎn)B運(yùn)動,且滿足∠DPC=∠A,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t秒,當(dāng)以D為圓心,以DC為半徑的圓與AB相切時(shí),求t的值.
【答案】
(1)證明:∵∠DPA+∠CPB=90°,∠DPA+∠ADP=90°,
∴∠PDA=∠CPB,
又∵∠A=∠B=90°,
∴△ADP∽△BPC,
∴ =,
∴AD·BC=AP·BP.
(2)解:結(jié)論:ADBC=APBP仍然成立,
理由:∵∠ADP+∠APD=180°﹣θ,∠DPA+∠CPB=180°﹣θ,
∴∠ADP=∠CPB,
又∵∠A=∠B=θ,
∴△ADP∽△BPC,
∴ = ,
∴AD·BC=AP·BP.
(3)解:作DE⊥AB,當(dāng)⊙D與AB相切時(shí),半徑r=DE=DC,
∴DE==4,
∴DC=4,
∴BC=1,
依據(jù)(1)(2)的結(jié)論AD·BC=AP·BP,
∴5×1=t(6﹣t),
∴t2﹣6t+5=0,
解得:t1=1,t2=5,
∴點(diǎn)P運(yùn)動時(shí)間為1s或5s.
【解析】(1)由同角的余角相等得∠PDA=∠CPB,根據(jù)相似三角形的判定得△ADP∽△BPC,再由相似三角形的性質(zhì)得出= ,即AD·BC=AP·BP.
(2)結(jié)論:AD·BC=AP·BP仍然成立;理由:由等量代換得∠ADP=∠CPB,根據(jù)相似三角形的判定得△ADP∽△BPC,再由相似三角形的性質(zhì)得出= ,即AD·BC=AP·BP.
(3)作DE⊥AB,當(dāng)⊙D與AB相切時(shí),半徑r=DE=DC,由勾股定理得DE=DC=4,依據(jù)(1)(2)的結(jié)論AD·BC=AP·BP,即t2﹣6t+5=0,解之即可得出答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),D是線段AB的五等分點(diǎn),若CD=6cm.
(1)求線段AB的長;
(2)若AE=DE,求線段EC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】公元前5世紀(jì),畢達(dá)哥拉斯學(xué)派中的一名成員希伯索斯發(fā)現(xiàn)了無理數(shù) ,導(dǎo)致了第一次數(shù)學(xué)危機(jī), 是無理數(shù)的證明如下: 假設(shè) 是有理數(shù),那么它可以表示成 (p與q是互質(zhì)的兩個(gè)正整數(shù)).于是( )2=( )2=2,所以,q2=2p2 . 于是q2是偶數(shù),進(jìn)而q是偶數(shù),從而可設(shè)q=2m,所以(2m)2=2p2 , p2=2m2 , 于是可得p也是偶數(shù).這與“p與q是互質(zhì)的兩個(gè)正整數(shù)”矛盾.從而可知“ 是有理數(shù)”的假設(shè)不成立,所以, 是無理數(shù).
這種證明“ 是無理數(shù)”的方法是( )
A.綜合法
B.反證法
C.舉反例法
D.數(shù)學(xué)歸納法
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.
(1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校興趣小組對網(wǎng)上吐糟較為頻繁的“醫(yī)患關(guān)系”產(chǎn)生了興趣,利用節(jié)假日在某社區(qū)開展了“造成醫(yī)患關(guān)系緊張的原因”的問卷調(diào)查.
造成醫(yī)患關(guān)系緊張的原因(單選) |
根據(jù)調(diào)查結(jié)果繪制出了如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問題:
(1)這次接受調(diào)查的總?cè)藬?shù)為人;
(2)在扇形統(tǒng)計(jì)圖中,“A”所在扇形的圓心角的度數(shù)為;
(3)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市有1000萬人,請你估計(jì)選D的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,E,F,B在同一直線上,點(diǎn)A,D在BC異側(cè),AB∥CD,AE=DF,∠A=∠D.
(1)求證:AB=CD;
(2)若AB=CF,∠B=40°,求∠D的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖,設(shè),,,求證:;
(2)若把(1)的題設(shè)中的“”與結(jié)論中的“”對調(diào)后,命題還成立嗎?說明理由;
(3)若把(1)的題設(shè)中的“”與結(jié)論中的“”對調(diào)后,命題還成立嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點(diǎn)D是AC上一個(gè)動點(diǎn),以AB為對角線的所有平行四邊形ADBE中,線段DE的最小值是( )
A.4
B.2
C.2
D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點(diǎn)O為AC邊上的一個(gè)動點(diǎn),過點(diǎn)O作直線MN∥BC,設(shè)MN交∠BCA的外角平分線CF于點(diǎn)F,交∠ACB內(nèi)角平分線CE于E.
(1)求證:EO=FO;
(2)當(dāng)點(diǎn)O運(yùn)動到何處時(shí),四邊形AECF是矩形?并證明你的結(jié)論;
(3)若AC邊上存在點(diǎn)O,使四邊形AECF是正方形,猜想△ABC的形狀并證明你的結(jié)論。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com