【題目】如圖,點C、D在線段AB上,且△PCD是等邊三角形.∠APB120°.

1)求證:△ACP∽△PDB;

2)當AC4,BD9時,試求CD的值.

【答案】1)詳見解析;(26

【解析】

1)先證明∠ACP=∠PDB120°,然后由∠A+B60°,∠DPB+B60°可證明∠A=∠DPB,從而可證明ACP∽△PDB

2)由相似三角形的性質(zhì)得到 ,根據(jù)等邊三角形的性質(zhì)得到PCPDCD,等量代換得到 ,即可得到答案.

1)證明:∵△PCD為等邊三角形,

∴∠PCD=∠PDC60°

∴∠ACP=∠PDB120°

∵∠APB120°,

∴∠A+B60°

∵∠PDB120°,

∴∠DPB+B60°

∴∠A=∠DPB

∴△ACP∽△PDB

2)解:由(1)得ACP∽△PDB,

∵△PCD是等邊三角形,

PCPDCD,

,

CD2ACBD

AC4BD9,

CD6

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,都是等腰直角三角形,的頂點的斜邊的中點重合,將繞點旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段與線段相交于點,射線與線段相交于點,與射線相交于點.

1)求證:

2)求證:平分;

3)當,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.

1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;

2)求一次打開鎖的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2-4x-3,下列說法中正確的是(

A.該函數(shù)圖象的開口向下B.該函數(shù)圖象的頂點坐標是(-2,-7)

C.x<0時,yx的增大而增大D.該函數(shù)圖象與x軸有兩個不同的交點,且分布在坐標原點兩側(cè)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yax22ax+c的圖象經(jīng)過點C0,﹣2),頂點D的坐標為(1,﹣),與x軸交于A、B兩點.

1)求拋物線的解析式;

2)連接AC,E為直線AC上一點,當△AOC∽△AEB時,求點E的坐標和的值.

3)點F 0,y)是y軸上一動點,當y為何值時,FC+BF的值最。⑶蟪鲞@個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某球室有三種品牌的個乒乓球,價格是7,89(單位:元)三種.從中隨機拿出一個球,已知(一次拿到元球)

1)求這個球價格的眾數(shù);

2)若甲組已拿走一個元球訓練,乙組準備從剩余個球中隨機拿一個訓練.

所剩的個球價格的中位數(shù)與原來個球價格的中位數(shù)是否相同?并簡要說明理由;

乙組先隨機拿出一個球后放回,之后又隨機拿一個,用列表法(如圖)求乙組兩次都拿到8元球的概率.

又拿

先拿

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請你選擇一種適當?shù)暮瘮?shù),求出它的函數(shù)關系式,并簡要說明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時,這種植物每天高度的增長量最大?

3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場將進貨單價為30元的商品以每個40元的價格售出時,平均每月能售出600個,調(diào)查表明:這種商品的售價每上漲1元,其銷售量就減少10.

1)為了使平均每月有10000元的銷售利潤且盡快售出,這種商品的售價應定為每個多少元?

2)當該商品的售價為每個多少元時,商場銷售該商品的平均月利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案