(2012•寧波模擬)在平面直角坐標(biāo)系xOy中,拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在原點(diǎn)的左側(cè),點(diǎn)B在原點(diǎn)的右側(cè)),與y軸交于點(diǎn)C,且OA=2,OC=3.
(1)求拋物線的解析式;
(2)若點(diǎn)E在第一象限內(nèi)的此拋物線上,且OE⊥BC于D,求點(diǎn)E的坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使線段PA與PE之差的值最大?若存在,請(qǐng)求出這個(gè)最大值和點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】分析:(1)已知了OA、OC的長(zhǎng),即可得出A、C兩點(diǎn)的坐標(biāo),然后將兩點(diǎn)坐標(biāo)代入拋物線中即可求出拋物線的解析式.
(2)不難得出B點(diǎn)坐標(biāo)為(3,0),因此△OBC是等腰直角三角形,如果OE⊥BC,那么E點(diǎn)必為直線y=x與拋物線的交點(diǎn),由此可求出E點(diǎn)的坐標(biāo).
(3)由于B點(diǎn)就是A點(diǎn)關(guān)于對(duì)稱軸的對(duì)稱點(diǎn),因此只需求出直線BE與拋物線對(duì)稱軸的交點(diǎn)即可得出P點(diǎn)的坐標(biāo).那么PA、PE的差的最大值就是BE的長(zhǎng),可根據(jù)BE的坐標(biāo)來(lái)求出這個(gè)最大值.
解答:解:(1)根據(jù)題意,得A(-2,0)、C(0,3).
∵拋物線過(guò)A(-2,0)、C(0,3)兩點(diǎn),

解得
∴拋物線的解析式為y=-x2+x+3.

(2)由y=-x2+x+3可得B點(diǎn)坐標(biāo)為(3,0).
∴OB=OC=3.
∵OD⊥BC,
∴OD平分∠BOC.(4分)
∴點(diǎn)E的橫坐標(biāo)等于縱坐標(biāo).
設(shè)E(x,y).
解方程組
,
∴點(diǎn)E的坐標(biāo)為(2,2).

(3)在拋物線的對(duì)稱軸上存在一點(diǎn)P,
使線段PA與PE之差的值最大.
當(dāng)點(diǎn)P為拋物線的對(duì)稱軸和BE所在的直線y=-2x+6的交點(diǎn)時(shí),
PA-PE=PB-PE=BE,其值最大.
BE==.(6分)

解得
∴點(diǎn)P的坐標(biāo)為(,5).
∴點(diǎn)P為(,5)時(shí)PA-PE的最大值為
點(diǎn)評(píng):考查二次函數(shù)解析式的確定、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問題的能力.要注意的是(3)中確定P點(diǎn)的位置是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)如圖,直線l1⊥x軸于點(diǎn)(1,0),直線l2⊥x軸于點(diǎn)(2,0),直線l3⊥x軸于點(diǎn)(3,0),…,直線ln⊥x軸于點(diǎn)(n,0)(n為正整數(shù)).函數(shù)y=x的圖象與直線l1,l2,l3,…,ln分別交于點(diǎn)A1,A2,A3,…,An;函數(shù)y=2x的圖象與直線l1,l2,l3,…,ln分別交于點(diǎn)B1,B2,B3,…,Bn.如果△OA1B1的面積記作S,四邊形A1A2B2B1的面積記作S1,四邊形A2A3B3B2的面積記作S2,…,四邊形AnAn+1Bn+1Bn的面積記作Sn,那么S1=
3
2
3
2
,S2=
5
2
5
2
,S2012=
2012
1
2
2012
1
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)6的倒數(shù)等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)先化簡(jiǎn),再求值:
x2+4x+4
x2-4
-
x
x-2
,其中x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)設(shè)0<n<m,m2+n2=4mn,則
m2-n2
mn
的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寧波模擬)(1)如圖1,正三角形ABC內(nèi)接于⊙O,P是劣弧BC上的任意一點(diǎn),連接PB、PC,求證:PB+PC=PA.
(2)如圖2,四邊形ABCD中,△ABM與△CDN是分別以AB、CD為一邊的圓的內(nèi)接正三角形,E、F分別在這兩個(gè)三角形的外接圓上.請(qǐng)指出E、F兩點(diǎn)的位置,使得AE+EB+EF+FC+FD的值最小,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案