【題目】如圖,△ABC各頂點的坐標(biāo)分別為A(-2,6),B(-3,2),C(0,3),將△ABC先向右平移4個單位長度,再向上平移3個單位長度,得到△DEF.
(1)分別寫出△DEF各頂點的坐標(biāo);
(2)如果將△DEF看成是由△ABC經(jīng)過一次平移得到的,請指出這一平移的平移方向和平移距離.
【答案】(1)D(2,9),E(1,5),F(4,6);(2)由A到D的方向,平移的距離是5個單位長度.
【解析】
(1)根據(jù)橫坐標(biāo)右移加,左移減;縱坐標(biāo)上移加,下移減即可寫出各點的坐標(biāo);
(2)連接AD,根據(jù)勾股定理求出AD的長,進(jìn)而可得出結(jié)論.
(1)∵A(-2,6),B(-3,2),C(0,3),將△ABC先向右平移4個單位長度,再向上平移3個單位長度,得到△DEF.
∴D(2,9),E(1,5),F(4,6);
(2)連接AD,∵由圖可知,AD==5,
∴如果將△DEF看成是由△ABC經(jīng)過一次平移得到的,那么這一平移的平移方向是由A到D的方向,平移的距離是5個單位長度.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,點D為BC上一點,且AD=DC,過A,B,D三點作⊙O,AE是⊙O的直徑,連結(jié)DE.
(1)求證:AC是⊙O的切線;
(2)若sinC=,AC=6,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個批發(fā)商銷售成本為20元/千克的某產(chǎn)品,根據(jù)物價部門規(guī)定:該產(chǎn)品每千克售價不得超過90元,在銷售過程中發(fā)現(xiàn)的售量y(千克)與售價x(元/千克)滿足一次函數(shù)關(guān)系,對應(yīng)關(guān)系如下表:
售價x(元/千克) | … | 50 | 60 | 70 | 80 | … |
銷售量y(千克) | … | 100 | 90 | 80 | 70 | … |
(1)求y與x的函數(shù)關(guān)系式;
(2)該批發(fā)商若想獲得4000元的利潤,應(yīng)將售價定為多少元?
(3)該產(chǎn)品每千克售價為多少元時,批發(fā)商獲得的利潤w(元)最大?此時的最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值,
(1)2x2y﹣[3xy2+2(xy2+2x2y)],其中x=,y=﹣2.
(2)已知a+b=4,ab=﹣2,求代數(shù)式(4a﹣3b﹣2ab)﹣(a﹣6b﹣ab)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分線BE交AC的延長線于點E.
(1)求∠CBE的度數(shù);
(2)過點D作DF∥BE,交AC的延長線于點F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=2cm,F(xiàn)是弦BC的中點,∠ABC=60°.若動點E以2cm/s的速度從A點出發(fā)沿著ABA方向運(yùn)動,設(shè)運(yùn)動時間為t(s)(0≤t<3),連接EF,當(dāng)t為_____s時,△BEF是直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,的平分線與邊的垂直平分線相交于,交的延長線于,于,現(xiàn)有下列結(jié)論:
①;②;③平分;④.其中正確的有________.(填寫序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知ABED,延長AD到C使AD=DC,連接BC,CE,BC交DE于點F,若AB=BC.
(1)求證:四邊形BECD是矩形;
(2)連接AE,若∠BAC=60°,AB=4,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com