【題目】已知A(2x-1,3x+2)是第一、三象限角平分線上的點(diǎn),則點(diǎn)A的坐標(biāo)是________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隧道的截面由拋物線AED和矩形ABCD(不含AD)構(gòu)成.矩形的長(zhǎng)BC為8 m,寬AB為2 m.以BC所在的直線為x軸,線段BC的中垂線為y軸,建立平面直角坐標(biāo)系,y軸是拋物線的對(duì)稱(chēng)軸,頂點(diǎn)E到坐標(biāo)原點(diǎn)O的距離為6 m.
(1)求拋物線的函數(shù)表達(dá)式.
(2)如果該隧道內(nèi)僅設(shè)雙行道,現(xiàn)有一輛卡車(chē)高4.2 m,寬2.4 m,那么這輛卡車(chē)能否通過(guò)該隧道?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,點(diǎn)M為射線AE上任意一點(diǎn)(不與點(diǎn)A重合),連接CM,將線段CM繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°得到線段CN,直線NB分別交直線CM,射線AE于點(diǎn)F、D.
(1)問(wèn)題發(fā)現(xiàn):直接寫(xiě)出∠NDE= 度;
(2)拓展探究:試判斷,如圖②當(dāng)∠EAC為鈍角時(shí),其他條件不變,∠NDE的大小有無(wú)變化?請(qǐng)給出證明.
(3)如圖③,若∠EAC=15°,BD=,直線CM與AB交于點(diǎn)G,其他條件不變,請(qǐng)直接寫(xiě)出AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,ABCD中,對(duì)角線AC、BD交于點(diǎn)O,直線EF經(jīng)過(guò)點(diǎn)O,分別交DA,BC的延長(zhǎng)線于點(diǎn)E,F(xiàn),連接BE,DF.
求證:
(1)AE=CF;
(2)四邊形BEDF是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知x=1是關(guān)于x的一元二次方程x2+kx+4=0的一個(gè)根,則k的值為( 。
A.5B.﹣5C.3D.﹣3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校七年級(jí)400名學(xué)生到郊外參加植樹(shù)活動(dòng),已知用3輛小客車(chē)和1輛大客車(chē)每次可運(yùn)送學(xué)生105人,用1輛小客車(chē)和2輛大客車(chē)每次可運(yùn)送學(xué)生110人.
(1)每輛小客車(chē)和每輛大客車(chē)各能坐多少名學(xué)生?
(2)若計(jì)劃租小客車(chē)m輛,大客車(chē)n輛,一次送完,且恰好每輛車(chē)都坐滿:
①請(qǐng)你設(shè)計(jì)出所有的租車(chē)方案;
②若小客車(chē)每輛租金150元,大客車(chē)每輛租金250元,請(qǐng)選出最省線的租車(chē)方案,并求出最少租金.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com