【題目】矩形OABC在直角坐標(biāo)系中的位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0)、C(0,3),直線y=x與BC邊相交于D.
(1)求點(diǎn)D的坐標(biāo):
(2)若拋物線y=ax+bx經(jīng)過D、A兩點(diǎn),試確定此拋物線的表達(dá)式:
(3)P為x軸上方(2)題中的拋物線上一點(diǎn),求△POA面積的最大值.
【答案】(1)(4,3);(2)y=x+x;(3)
【解析】
(1)根據(jù)矩形的性質(zhì)可知點(diǎn)D的縱坐標(biāo)為3,代入直線解析式即可求出點(diǎn)D的橫坐標(biāo),從而可確定點(diǎn)D的坐標(biāo);
(2)直接將點(diǎn)A、D的坐標(biāo)代入拋物線解析式即可;
(3)當(dāng)P為拋物線頂點(diǎn)時(shí),△POA面積最大,將拋物線解析式化為頂點(diǎn)式,求出點(diǎn)P的坐標(biāo),再計(jì)算面積即可.
解:(1)設(shè)D的橫坐標(biāo)為x,則根據(jù)題意有3=x,則x=4
∴D點(diǎn)坐標(biāo)為(4,3)
(2)將A(6,0),D(4,3)代入y=ax+bx中,得
解得:
∴此拋物線的表達(dá)式為:y=x+x;
(3)由于△POA底邊為OA=6,
∴當(dāng)P為拋物線頂點(diǎn)時(shí),△POA面積最大
∴
∴
∴的最大值為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳繩是大家喜聞樂見的一項(xiàng)體育運(yùn)動(dòng),集體跳繩時(shí),需要兩人同頻甩動(dòng)繩子,當(dāng)繩子甩到最高處時(shí),其形狀可近似看作拋物線.如圖是小明和小亮甩繩子到最高處時(shí)的示意圖,兩人拿繩子的手之間的距離為,離地面的高度為,以小明的手所在位置為原點(diǎn),建立平面直角坐標(biāo)系.
(1)當(dāng)身高為的小紅站在繩子的正下方,且距小明拿繩子手的右側(cè)處時(shí),繩子剛好通過小紅的頭頂,求繩子所對(duì)應(yīng)的拋物線的表達(dá)式;
(2)若身高為的小麗也站在繩子的正下方.
①當(dāng)小麗在距小亮拿繩子手的左側(cè)處時(shí),繩子能碰到小麗的頭嗎?請(qǐng)說明理由;
③設(shè)小麗與小亮拿繩子手之間的水平距離為,為保證繩子不碰到小麗的頭頂,求的取值范圍.(參考數(shù)據(jù):取3.16)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(1,a)是反比例函數(shù)y1=的圖象上一點(diǎn),直線y2=﹣與反比例函數(shù)y1=的圖象的交點(diǎn)為點(diǎn)B、D,且B(3,﹣1),求:
(1)求反比例函數(shù)的解析式;
(2)求點(diǎn)D坐標(biāo),并直接寫出y1>y2時(shí)x的取值范圍;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市地鐵1號(hào)線全長(zhǎng)約60km,市政府通過招標(biāo),甲、乙兩家地鐵工程公司承擔(dān)了施工任務(wù),根據(jù)招標(biāo)合同可知,甲公司每月計(jì)劃施工效率是乙公司的1.2倍,則乙公司單獨(dú)施工比甲公司單獨(dú)施工多用10個(gè)月,且市政府需要支付給甲公司的施工費(fèi)用為6億元/km,乙公司的施工費(fèi)用為5億元/km.
(1)甲、乙兩家地鐵工程公司每月計(jì)劃施工各為多少km?
(2)由于設(shè)備和施工現(xiàn)場(chǎng)只能供一家地鐵工程公司單獨(dú)施工的原因,現(xiàn)計(jì)劃甲、乙兩家公司共用55個(gè)月恰好完成施工任務(wù)(每家公司施工時(shí)間不足一個(gè)月按照一個(gè)整月計(jì)算),且甲公司施工時(shí)間不得少于乙公司的兩倍,應(yīng)如何安排才能使市政府支付給兩家地鐵工程公司的總費(fèi)用最少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個(gè)直徑為1m的圓形鐵皮,要從中剪出一個(gè)最大的圓心角為90°的扇形ABC,如圖所示.
(1)求被剪掉陰影部分的面積:
(2)用所留的扇形鐵皮圍成一個(gè)圓錐,該圓錐的底面圓的半徑是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全面兩孩政策實(shí)施后,甲,乙兩個(gè)家庭有了各自的規(guī)劃.假定生男生女的概率相同,回答下列問題:
(1)甲家庭已有一個(gè)男孩,準(zhǔn)備再生一個(gè)孩子,則第二個(gè)孩子是女孩的概率是 ;
(2)乙家庭沒有孩子,準(zhǔn)備生兩個(gè)孩子,求至少有一個(gè)孩子是女孩的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D在AB的延長(zhǎng)線上,C、E是⊙O上的兩點(diǎn),CE=CB,∠BCD=∠CAE,延長(zhǎng)AE交BC的延長(zhǎng)線于點(diǎn)F.
(1)求證:CD是⊙O的切線;
(2)求證:CE=CF;
(3)若BD=1,CD=,求弦AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、已兩家商場(chǎng)平時(shí)以同樣價(jià)格出售相同的商品,春節(jié)期間兩家商場(chǎng)都讓利酬賓,其中甲商場(chǎng)所有商品按折出售,乙商場(chǎng)對(duì)一次購物中超過200元后的價(jià)格部分打折. 設(shè)原價(jià)購物金額累計(jì)為元().
根據(jù)題意,填寫下表: (單位:元)
原價(jià)購物金額累計(jì)/元. | 130 | 300 | 700 | ··· |
甲商場(chǎng)實(shí)際購物金額/元 | 104 | 560 | ··· | |
乙商場(chǎng)實(shí)際購物金額/元 | 130 | 270 | ··· |
設(shè)在甲商場(chǎng)實(shí)際購物金額為元,在乙商場(chǎng)實(shí)際購物金額為元,分別寫出,關(guān)于的函數(shù)解析式;
根據(jù)題意填空:
①若在同甲商場(chǎng)和在乙商場(chǎng)實(shí)際購物花費(fèi)金額一樣多,則在同一商場(chǎng)所購商品原價(jià)金額累計(jì)為______元 ;
②若在同一商場(chǎng)購物,商品原價(jià)購物金額累計(jì)為 元,則在甲、乙.兩家商場(chǎng)中的 商場(chǎng)實(shí)際購物花費(fèi)金少.
③若在同一商場(chǎng)實(shí)際購物金額為元,則在甲、乙兩家商場(chǎng)中的_____商場(chǎng)商品原價(jià)購物累計(jì)金額多.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+2交x軸于A(﹣1,0),B(4,0)兩點(diǎn),交y軸于點(diǎn)C,與過點(diǎn)C且平行于x軸的直線交于另一點(diǎn)D,點(diǎn)P是拋物線上一動(dòng)點(diǎn).
(1)求拋物線解析式及點(diǎn)D坐標(biāo);
(2)點(diǎn)E在x軸上,若以A,E,D,P為頂點(diǎn)的四邊形是平行四邊形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)過點(diǎn)P作直線CD的垂線,垂足為Q,若將△CPQ沿CP翻折,點(diǎn)Q的對(duì)應(yīng)點(diǎn)為Q′.是否存在點(diǎn)P,使Q′恰好落在x軸上?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com