如圖:已知P為⊙O直徑AB上任意一點,弦CD過P且與AB交成45°角.求證:PC2+PD2為定值.

證明:當點p與O點重合時,
PC2+PD2=2圓O的半徑的平方
當點P為一般情況時,
作CM⊥AB于M,DN⊥AB于N,連接OC和OD,
可知∠NDP=∠MCP=45°
又OC=OD,則∠ODP=∠OCP
∴∠NDO=∠COM
∴Rt△ODN≌Rt△COM
∴ON=CM=PM,OM=ND=PN
又∵OC2=CM2+OM2,OD2=DN2+ON2
∴OC2=CM2+PN2,OD2=DN2+PM2
∴OC2+OD2=CM2+PN2+DN2+PM2=PC2+PD2,
因此PC2+PD2=2圓O的半徑的平方(為定值).
分析:分類討論(1)P點與O點重合,(2)P為一般情況,求證Rt△ODN≌Rt△COM,得ON=CM=PM,OM=ND=PN,從而求證OC2+OD2=PC2+PD2為定值.
點評:本題考查了在圓中構建三角形運用勾股定理解直角三角形,本題中求證PC2+PD2=2OC2是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知拋物線C1與坐標軸的交點依次是A(-4,0),B(-2,0),E(0,8).
(1)求拋物線C1關于原點對稱的拋物線C2的解析式;
(2)設拋物線C1的頂點為M,拋物線C2與x軸分別交于C,D兩點(點C在點D的左側),頂點為N,四邊形MDNA的面積為S.若點A,點D同時以每秒1個單位的速度沿水平方向分別向右、向左運動;與此同時,點M,點N同時以每秒2個單位的速度沿堅直方向分別向下、向上運動,直到點A與點D重合為止.求出四邊形MDNA的面積S與運動時間t之間的關系式,并寫出自變量t的取值范圍;
(3)當t為何值時,四邊形MDNA的面積S有最大值,并求出此最大值;
(4)在運動過程中,四邊形MDNA能否形成矩形?若能,求出此時t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( 。
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

學習過三角函數(shù),我們知道在直角三角形中,一個銳角的大小與兩條邊長的比值相互唯一確定,因此邊長與角的大小之間可以相互轉化.類似的,也可以在等腰三角形中建立邊角之間的聯(lián)系,我們定義:等腰三角形中底邊與腰的比叫做頂角的正對(sad).如圖,在△ABC中,AB=AC,頂角A的正對記作sadA,這時sad A=
1
2
.容易知道一個角的大小與這個角的正對值也是相互唯一確定的.
根據(jù)上述對角的正對定義,解下列問題:
(1)填空:sad60°=
1
1
,sad90°=
2
2
,sad120°=
3
3
;
(2)對于0°<A<180°,∠A的正對值sadA的取值范圍是
0<sadA<2
0<sadA<2

(3)如圖,已知sinA=
3
5
,其中A為銳角,試求sadA的值;
(4)設sinA=k,請直接用k的代數(shù)式表示sadA的值為
2-2
1-k2
2-2
1-k2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經作半圓,面積分別記為S1、S2,則S1+S2的值等于(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是2,如果正方形ABCD的四個頂點分別在四條直線上,則正方形邊長的值為
2
5
2
5

查看答案和解析>>

同步練習冊答案