如圖,直線y=x+與x軸、y軸分別相交于A,B兩點,圓心P的坐標(biāo)為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左移動,當(dāng)⊙P與該直線相交時,橫坐標(biāo)為整數(shù)的點P有    個.
【答案】分析:因為是動點,所以從特殊位置(相切)入手分析,分右相切和左相切兩種情況,然后求解.
解答:解:若圓和直線相切,則圓心到直線的距離應(yīng)等于圓的半徑1,
據(jù)直線的解析式求得A(-3,0),B(0,),
則tan∠BAO==,
所以∠BAO=30°,
所以當(dāng)相切時,AP=2,
點P可能在點A的左側(cè)或右側(cè).所以要相交,應(yīng)介于這兩種情況之間,即需要移動的距離>4-2=2,而<3+2=5,此時橫坐標(biāo)為整數(shù)的點P有(-2,0)(-3,0)(-4,0)三個.
故答案為3.
點評:注意:本題正確答案為3,有許多學(xué)生把直線與圓相切的點也看成交點,得到答案是5;也有的學(xué)生只考慮⊙P在線段OA之間運動,得到答案為2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=k1x與雙曲線y=
k2x
交于A、B兩點,那么點B的坐標(biāo)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=x與反比例函數(shù)y=
k
x
(x>0)的圖象交于點A,AB⊥y軸,垂足為B,點C在射線BA上(端點除外),點E在x軸上,且∠OCE=90°,CH⊥x軸,垂足為H,并與反比例函數(shù)y=
k
x
圖象交于點G.
(1)若點B的坐標(biāo)為(0,4),求k的值;
(2)在(1)的條件下,求證:HG=HE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•張家界)如圖,直線x=2與反比例函數(shù)y=
2
x
y=-
1
x
的圖象分別交于A、B兩點,若點P是y軸上任意一點,則△PAB的面積是
3
2
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•錦州)如圖,直線y=mx與雙曲線y=
k
x
交于A,B兩點,過點A作AM⊥x軸,垂足為點M,連接BM,若S△ABM=2,則k的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線y=mx與雙曲線y=
k
x
交于A、B兩點,過點A作AM⊥x軸,垂足為M,連結(jié)BM,若S△ABM=3,則k的值是(  )

查看答案和解析>>

同步練習(xí)冊答案