如圖,AB為⊙O的弦,∠AOB=90°,AB=a,則OA=    ,O點(diǎn)到AB的距離=   
【答案】分析:過(guò)O作OC垂直于弦AB,利用垂徑定理得到C為AB的中點(diǎn),然后由OA=OB,且∠AOB為直角,得到三角形OAB為等腰直角三角形,由斜邊AB的長(zhǎng),利用勾股定理求出直角邊OA的長(zhǎng)即可;再由C為AB的中點(diǎn),由AB的長(zhǎng)求出AC的長(zhǎng),在直角三角形OAC中,由OA及AC的長(zhǎng),利用勾股定理即可求出OC的長(zhǎng),即為O點(diǎn)到AB的距離.
解答:解:過(guò)O作OC⊥AB,則有C為AB的中點(diǎn),

∵OA=OB,∠AOB=90°,AB=a,
∴根據(jù)勾股定理得:OA2+OB2=AB2,
∴OA=a,
在Rt△AOC中,OA=a,AC=AB=a,
根據(jù)勾股定理得:OC==a.
故答案為:a;a
點(diǎn)評(píng):此題考查了垂徑定理,等腰直角三角形的性質(zhì),以及勾股定理,在圓中遇到弦,常常過(guò)圓心作弦的垂線,根據(jù)近垂徑定理由垂直得中點(diǎn),進(jìn)而由弦長(zhǎng)的一半,圓的半徑及弦心距構(gòu)造直角三角形,利用勾股定理來(lái)解決問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,AB為⊙O的弦,∠AOB=100°,點(diǎn)C在⊙O上,且
AC
=
BC
,則∠CAB的度數(shù)為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的弦,過(guò)點(diǎn)O作AB的平行線,交⊙O于點(diǎn)C,直線OC上一點(diǎn)D滿足∠D=∠ACB.
(1)判斷直線BD與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若⊙O的半徑等于4,tan∠ACB=
43
,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

54、如圖,AB為⊙O的弦,C、D為直線AB上兩點(diǎn),要使OC=OD,則圖中的線段必滿足的條件是
AC=BD

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)三模)已知:如圖,AB為⊙O的弦,OD⊥AB,垂足為點(diǎn)D,DO的延長(zhǎng)線交⊙O于點(diǎn)C.過(guò)點(diǎn)C作CE⊥AO,分別與AB、AO的延長(zhǎng)線相交于E、F兩點(diǎn).CD=8,sin∠A=
35

求:(1)弦AB的長(zhǎng);
(2)△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB為⊙0的弦,⊙0的半徑為10,0C⊥AB于點(diǎn)D,交⊙0于點(diǎn)C,且CD=2,則弦AB的長(zhǎng)是
12
12

查看答案和解析>>

同步練習(xí)冊(cè)答案