(2013•宜昌)如圖,點E,F(xiàn)分別是銳角∠A兩邊上的點,AE=AF,分別以點E,F(xiàn)為圓心,以AE的長為半徑畫弧,兩弧相交于點D,連接DE,DF.
(1)請你判斷所畫四邊形的形狀,并說明理由;
(2)連接EF,若AE=8厘米,∠A=60°,求線段EF的長.
分析:(1)由AE=AF=ED=DF,根據(jù)四條邊都相等的四邊形是菱形,即可證得:四邊形AEDF是菱形;
(2)首先連接EF,由AE=AF,∠A=60°,可證得△EAF是等邊三角形,則可求得線段EF的長.
解答:解:(1)菱形.
理由:∵根據(jù)題意得:AE=AF=ED=DF,
∴四邊形AEDF是菱形;

(2)連接EF,
∵AE=AF,∠A=60°,
∴△EAF是等邊三角形,
∴EF=AE=8厘米.
點評:此題考查了菱形的判定與性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜昌)如圖,已知AB∥CD,E是AB上一點,DE平分∠BEC交CD于D,∠BEC=100°,則∠D的度數(shù)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜昌)如圖,DC 是⊙O直徑,弦AB⊥CD于F,連接BC,DB,則下列結(jié)論錯誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜昌)如圖,點A,B,C,D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C,D,E為頂點的三角形與△ABC相似,則點E的坐標(biāo)不可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•宜昌)如圖1,平面直角坐標(biāo)系中,等腰直角三角形的直角邊BC在x軸正半軸上滑動,點C的坐標(biāo)為(t,0),直角邊AC=4,經(jīng)過O,C兩點做拋物線y1=ax(x-t)(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點A的坐標(biāo)及k的值:A
(t,4)
(t,4)
,k=
4
t
(k>0)
4
t
(k>0)
;
(2)隨著三角板的滑動,當(dāng)a=
1
4
時:
①請你驗證:拋物線y1=ax(x-t)的頂點在函數(shù)y=-
1
4
x2
的圖象上;
②當(dāng)三角板滑至點E為AB的中點時,求t的值;
(3)直線OA與拋物線的另一個交點為點D,當(dāng)t≤x≤t+4,|y2-y1|的值隨x的增大而減小,當(dāng)x≥t+4時,|y2-y1|的值隨x的增大而增大,求a與t的關(guān)系式及t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案