如圖所示,在△ABC中,以AB為直徑的⊙O交BC于點P,PD⊥AC于點D,且PD與⊙O相切.
(1)求證:AB=AC;
(2)若BC=6,AB=4,求CD的值.

【答案】分析:(1)連接OP,根據(jù)切線的性質(zhì)可知OP⊥PD,可求出OP∥AC,根據(jù)三角形中位線定理可知,OP=AC,由于OP=AB即可解答.
(2)連接AP,可得出Rt△CDP∽Rt△CPA,進而根據(jù)相似三角形的性質(zhì)解答即可.
解答:(1)證明:連接OP,
∵PD與⊙O相切,
∴OP⊥PD,
∵AC⊥PD,
∴OP∥AC,
∵OP=0A=OB=AB,
∴OP是△ABC的中位線,∴OP=AC,
∴AC=AB.

(2)解:連接AP,
∵AB為直徑,
∴AP⊥BC;
由(1)知,AC=AB=4,
∴PC=PB;
又∵BC=6,
∴PC=3;
在Rt△CDP與Rt△CPA中,∠C=∠C,
∴Rt△CDP∽Rt△CPA,
=,
∵BC=6,AB=4,
=
CD=
點評:此題比較復雜,解答此題的關鍵是連接OP、AP,綜合利用切線、相似三角形、等腰三角形等知識來求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習冊答案