【題目】在平面直角坐標(biāo)系中,已知點(diǎn),,,其中,以點(diǎn)為頂點(diǎn)的平行四邊形有三個(gè),記第四個(gè)頂點(diǎn)分別為,如圖所示.

(1)若,則點(diǎn)的坐標(biāo)分別是( ),( ),( );

(2)是否存在點(diǎn),使得點(diǎn)在同一條拋物線上?若存在,求出點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

【答案】(1)(-3,3),(1,3),(-3,-1)(2)不存在

【解析】分析: 1)根據(jù)平行四邊形對(duì)邊相等的性質(zhì)即可得到點(diǎn)的坐標(biāo).

(2)不存在. 假設(shè)滿足條件的C點(diǎn)存在,即A,B,在同一條拋物線上,則線段AB的垂直平分線即為這條拋物線的對(duì)稱軸,而,在直線上,則 的中點(diǎn)C也在拋物線對(duì)稱軸上,故,即點(diǎn)C的坐標(biāo)為(-2,n. 在直線上,則 的中點(diǎn)C也在拋物線對(duì)稱軸上,故,即點(diǎn)C的坐標(biāo)為(-2,n.根據(jù)為拋物線的頂點(diǎn).設(shè)出拋物線的方程,把點(diǎn)B的坐標(biāo)代入得.把點(diǎn)的坐標(biāo)代入得到,與矛盾. 所以不存在滿足條件的C點(diǎn).

1-3,3),13),-3-1

(2)不存在. 理由如下:

假設(shè)滿足條件的C點(diǎn)存在,即A,B,,在同一條拋物線上,則線段AB的垂直平分線即為這條拋物線的對(duì)稱軸,而,在直線上,則 的中點(diǎn)C也在拋物線對(duì)稱軸上,故,即點(diǎn)C的坐標(biāo)為(-2,n.

由題意得:-4,n),0,n),-2.

注意到在拋物線的對(duì)稱軸上,故為拋物線的頂點(diǎn). 設(shè)拋物線的表達(dá)式是.

當(dāng)時(shí),,代入得.

所以.

,得,解得,與矛盾.

所以不存在滿足條件的C點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】201712月,乙型,甲型H3N2和甲型H1N1三種禽流感病毒共同發(fā)威,造成流感在某市迅速蔓延,下面是該市確診流感患者的統(tǒng)計(jì)圖:

(1)在1218日,該市被確診的流感患者中多少乙型流感患者?

(2)在12月17日至21日這5天中,該市平均每天新增流感確診病例多少人?如果接下來(lái)的5天中繼續(xù)按這個(gè)平均數(shù)增加,那么到1226日,該市流感累計(jì)確診病例將會(huì)達(dá)到多少人?

(3)某地因1人患了流感沒(méi)有及時(shí)隔離治療,經(jīng)過(guò)兩天傳染后共有9人患了流感,每天傳染中平均一個(gè)人傳染了幾個(gè)人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣x2+2x+3x軸交于A,B,與y軸交于C,拋物線的頂點(diǎn)為D,直線l過(guò)Cx軸于E(4,0).

(1)寫出D的坐標(biāo)和直線l的解析式;

(2)P(x,y)是線段BD上的動(dòng)點(diǎn)(不與B,D重合),PFx軸于F,設(shè)四邊形OFPC的面積為S,求Sx之間的函數(shù)關(guān)系式,并求S的最大值;

(3)點(diǎn)Qx軸的正半軸上運(yùn)動(dòng),過(guò)Qy軸的平行線,交直線lM,交拋物線于N,連接CN,將CMN沿CN翻轉(zhuǎn),M的對(duì)應(yīng)點(diǎn)為M′.在圖2中探究:是否存在點(diǎn)Q,使得M′恰好落在y軸上?若存在,請(qǐng)求出Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】補(bǔ)全下面的解題過(guò)程:

如圖,已知OC是∠AOB內(nèi)部的一條射線,OD是∠AOB的平分線,∠AOC2BOC且∠BOC40°,求∠COD的度數(shù).

解:因?yàn)椤?/span>AOC2BOC,∠BOC40°,所以∠AOC_____°,所以∠AOB=∠AOC+__________°

因?yàn)?/span>OD平分∠AOB,所以∠AOD__________°,所以∠COD=∠_____﹣∠AOD_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上,點(diǎn)O為原點(diǎn),點(diǎn)A表示的數(shù)為10,動(dòng)點(diǎn)BC在數(shù)軸上移動(dòng),且總保持BC3(點(diǎn)C在點(diǎn)B右側(cè)),設(shè)點(diǎn)B表示的數(shù)為m

1)如圖1,若BOA中點(diǎn),則AC   ,點(diǎn)C表示的數(shù)是   ;

2)若BC都在線段OA上,且AC2OB,求此時(shí)m的值;

3)當(dāng)線段BC沿射線AO方向移動(dòng)時(shí),若存在ACOBAB,求滿足條件的m值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)某一個(gè)函數(shù)給出如下定義:若存在實(shí)數(shù),對(duì)于函數(shù)圖象上橫坐標(biāo)之差為1的任意兩點(diǎn),都成立,則稱這個(gè)函數(shù)是限減函數(shù),在所有滿足條件的中,其最大值稱為這個(gè)函數(shù)的限減系數(shù).例如,函數(shù),當(dāng)取值時(shí),函數(shù)值分別為,,故,因此函數(shù)是限減函數(shù),它的限減系數(shù)為

(1)寫出函數(shù)的限減系數(shù);

(2),已知)是限減函數(shù),且限減系數(shù),求的取值范圍

(3)已知函數(shù)的圖象上一點(diǎn),過(guò)點(diǎn)作直線垂直于軸,將函數(shù)的圖象在點(diǎn)右側(cè)的部分關(guān)于直線翻折其余部分保持不變,得到一個(gè)新函數(shù)的圖象如果這個(gè)新函數(shù)是限減函數(shù),且限減系數(shù),直接寫出點(diǎn)橫坐標(biāo)的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在正方形ABCD中,P為對(duì)角線BD上的一點(diǎn),點(diǎn)EAD的延長(zhǎng)線上,且PAPEPECDF,連接CE

1)求證:PCE是等腰直角三角形;

2)如圖2,把正方形ABCD改為菱形ABCD,其他條件不變,當(dāng)∠ABC120°時(shí),判斷PCE的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形OABC中,點(diǎn)A,點(diǎn)C分別在x軸和y軸上,點(diǎn)B(1,2).拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、C,交BC延長(zhǎng)線于D,與x軸另一個(gè)交點(diǎn)為E,且AE=4.

(1)求拋物線的表達(dá)式;

(2)點(diǎn)P是直線OD上方拋物線上的一個(gè)動(dòng)點(diǎn),PFy,PQOD,垂足為Q.

①猜想:PQFQ的數(shù)量關(guān)系,并證明你的猜想;

②設(shè)PQ的長(zhǎng)為,點(diǎn)P的橫坐標(biāo)為m,求m的函數(shù)表達(dá)式,并求的最大值;

(3)如果M是拋物線對(duì)稱軸上一點(diǎn),在拋物線上是否存在一點(diǎn)N,使得以M、N、C、E為頂點(diǎn)的四邊形是平行四邊形?若存在,直接寫出N點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊△ABC中, MBC邊上的中點(diǎn), D是射線AM上的一個(gè)動(dòng)點(diǎn),以CD為一邊且在CD的下方作等邊△CDE,連接BE

1)填空:若DM重合時(shí)(如圖1∠CBE= 度;

2)如圖2,當(dāng)點(diǎn)D在線段AM上時(shí)(點(diǎn)D不與AM重合),請(qǐng)判斷(1)中結(jié)論是否成立?并說(shuō)明理由;

3)在(2)的條件下,如圖3,若點(diǎn)PQBE的延長(zhǎng)線上,且CP=CQ=4AB=6,試求PQ的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案