【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.

(1)求該拋物線的解析式;
(2)若點(diǎn)E為x軸下方拋物線上的一動(dòng)點(diǎn),當(dāng)SABE=SABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】
(1)

解:把A、B兩點(diǎn)坐標(biāo)代入解析式可得 ,解得 ,

∴拋物線解析式為y= x2+ x﹣5


(2)

解:在y= x2+ x﹣5中,令x=0可得y=﹣5,

∴C(0,﹣5),

∵SABE=SABC,且E點(diǎn)在x軸下方,

∴E點(diǎn)縱坐標(biāo)和C點(diǎn)縱坐標(biāo)相同,

當(dāng)y=﹣5時(shí),代入可得 x2+ x=﹣5,解得x=﹣2或x=0(舍去),

∴E點(diǎn)坐標(biāo)為(﹣2,﹣5);


(3)

解:假設(shè)存在滿足條件的P點(diǎn),其坐標(biāo)為(m, m2+ m﹣5),

如圖,連接AP、CE、AE,過E作ED⊥AC于點(diǎn)D,過P作PQ⊥x軸于點(diǎn)Q,

則AQ=AO+OQ=5+m,PQ=| m2+ m﹣5|,

在Rt△AOC中,OA=OC=5,則AC=5 ,∠ACO=∠DCE=45°,

由(2)可得EC=2,在Rt△EDC中,可得DE=DC= ,

∴AD=AC﹣DC=5 =4 ,

當(dāng)∠BAP=∠CAE時(shí),則△EDA∽△PQA,

= ,即 = ,

m2+ m﹣5= (5+m)或 m2+ m﹣5=﹣ (5+m),

當(dāng) m2+ m﹣5= (5+m)時(shí),整理可得4m2﹣5m﹣75=0,解得m= 或m=﹣5(與A點(diǎn)重合,舍去),

當(dāng) m2+ m﹣5=﹣ (5+m)時(shí),整理可得4m2+11m﹣45=0,解得m= 或m=﹣5(與A點(diǎn)重合,舍去),

∴存在滿足條件的點(diǎn)P,其橫坐標(biāo)為


【解析】本題主要考查二次函數(shù)的綜合運(yùn)用.涉及到的知識(shí)點(diǎn)有待定系數(shù)法、三角形的面積、相似三角形的判定和性質(zhì)及分類討論等.在(3)中利用∠BAP=∠CAE構(gòu)造三角形相似是解題的關(guān)鍵.本題考查知識(shí)點(diǎn)較多,綜合性很強(qiáng),難度適中.(1)把A、B兩點(diǎn)的坐標(biāo)代入,利用待定系數(shù)法可求得拋物線的解析式;(2)當(dāng)SABE=SABC時(shí),可知E點(diǎn)和C點(diǎn)的縱坐標(biāo)相同,可求得E點(diǎn)坐標(biāo);(3)在△CAE中,過E作ED⊥AC于點(diǎn)D,可求得ED和AD的長(zhǎng)度,設(shè)出點(diǎn)P坐標(biāo),過P作PQ⊥x軸于點(diǎn)Q,由條件可知△EDA∽△PQA,利用相似三角形的對(duì)應(yīng)邊可得到關(guān)于P點(diǎn)坐標(biāo)的方程,可求得P點(diǎn)坐標(biāo).
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的面積的相關(guān)知識(shí),掌握三角形的面積=1/2×底×高,以及對(duì)相似三角形的判定與性質(zhì)的理解,了解相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在⊙O中,AB為直徑,C為⊙O上一點(diǎn).

(1)如圖1.過點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=27°,求∠P的大;
(2)如圖2,D為 上一點(diǎn),且OD經(jīng)過AC的中點(diǎn)E,連接DC并延長(zhǎng),與AB的延長(zhǎng)線相交于點(diǎn)P,若∠CAB=10°,求∠P的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了探究n條直線能把平面最多分成幾部分,我們從最簡(jiǎn)單的情形入手:

一條直線把平面分成2部分;

兩條直線可把平面最多分成4部分;

三條直線可把平面最多分成7部分;

四條直線可把平面最多分成11部分;

……

把上述探究的結(jié)果進(jìn)行整理,列表分析:

直線條數(shù)

把平面最多

分成的部分?jǐn)?shù)

寫成和的形式

1

2

1+1

2

4

1+1+2

3

7

1+1+2+3

4

11

1+1+2+3+4

(1)當(dāng)直線條數(shù)為5時(shí),把平面最多分成____部分,寫成和的形式:______;

(2)當(dāng)直線條數(shù)為10時(shí),把平面最多分成____部分;

(3)當(dāng)直線條數(shù)為n時(shí),把平面最多分成多少部分?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A在以BC為直徑的⊙O內(nèi),且AB=AC,以點(diǎn)A為圓心,AC長(zhǎng)為半徑作弧,得到扇形ABC,剪下扇形ABC圍成一個(gè)圓錐(AB和AC重合),若∠BAC=120°,BC=2 ,則這個(gè)圓錐底面圓的半徑是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.

(1)用無(wú)刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有三張分別標(biāo)有數(shù)字1、2、6的卡片,它們除了數(shù)字外完全相同,把卡片背面朝上洗勻,從中任意抽取一張,將上面的數(shù)字記為a(不放回),再?gòu)闹腥我獬槿∫粡,將上面的?shù)字記為b,這樣的數(shù)字a,b能使關(guān)于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有兩個(gè)正根的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩條射線AMBN,線段CD的兩個(gè)端點(diǎn)CD分別在射線BN、AM上,且∠ABCD=108°.E是線段AD上一點(diǎn)(不與點(diǎn)A、D重合),且BD平分∠EBC

(1)求∠ABC的度數(shù).

(2)請(qǐng)?jiān)趫D中找出與∠ABC相等的角,并說明理由.

(3)若平行移動(dòng)CD,且ADCD,則∠ADB與∠AEB的度數(shù)之比是否隨著CD位置的變化而發(fā)生變化?若變化,找出變化規(guī)律;若不變,求出這個(gè)比值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】暑假期間,某學(xué)校計(jì)劃用彩色的地面磚鋪設(shè)教學(xué)樓門前一塊矩形操場(chǎng)ABCD的地面.已知這個(gè)矩形操場(chǎng)地面的長(zhǎng)為100m,寬為80m,圖案設(shè)計(jì)如圖所示:操場(chǎng)的四角為小正方形,陰影部分為四個(gè)矩形,四個(gè)矩形的寬都為小正方形的邊長(zhǎng),在實(shí)際鋪設(shè)的過程總,陰影部分鋪紅色地面磚,其余部分鋪灰色地面磚.
(1)如果操場(chǎng)上鋪灰色地面磚的面積是鋪紅色地面磚面積的4倍,那么操場(chǎng)四角的每個(gè)小正方形邊長(zhǎng)是多少米?
(2)如果灰色地面磚的價(jià)格為每平方米30元,紅色地面磚的價(jià)格為每平方米20元,學(xué),F(xiàn)有15萬(wàn)元資金,問這些資金是否能購(gòu)買所需的全部地面磚?如果能購(gòu)買所學(xué)的全部地面磚,則剩余資金是多少元?如果不能購(gòu)買所需的全部地面磚,教育局還應(yīng)該至少給學(xué)校解決多少資金?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某電信部門計(jì)劃修建一條連接B、C兩地的電纜.測(cè)量人員在山腳A點(diǎn)測(cè)得B、C兩地的仰角分別為30°、45°,在B地測(cè)得C地的仰角為60°.已知C地比A地高200m,電纜BC至少長(zhǎng)多少米(精確到1m)?

查看答案和解析>>

同步練習(xí)冊(cè)答案