【題目】解方程:
(1)x2﹣6x﹣16=0
(2)(x﹣3)2=3x(x﹣3)
(3)(x+3)(x﹣2)=50
(4)(2x+1)2+3(2x+1)+2=0.
【答案】
(1)解:原方程變形為(x﹣8)(x+2)=0
x﹣8=0或x+2=0
∴x1=8,x2=﹣2
(2)解:(x﹣3)2=3x(x﹣3),
(x﹣3)(1﹣3x)=0,
則x﹣3=0或1﹣3x=0,
∴x1=3,x2=
(3)解:(x+3)(x﹣2)=50,
x2+x﹣56=0,
(x﹣7)(x+8)=0,
則x﹣7=0或x+8=0,
∴x1=7,x2=﹣8.
(4)解:設(shè)2x+1=t,則
t2+3t+2=0,
(t+1)2+(t+2)=0.
t=﹣1或t=﹣2,
故2x+1=﹣1或2x+1=﹣2,
∴x1=﹣1,x2=﹣1.5
【解析】(1)解此一元二次方程選擇因式分解法最簡(jiǎn)單,因?yàn)椹?6=﹣8×2,﹣6=﹣8+2,所以x2﹣6x﹣16=(x﹣8)(x+2),這樣即達(dá)到了降次的目的.(2)先移項(xiàng),然后利用提取公因式對(duì)等式的左邊進(jìn)行因式分解,再來(lái)解方程即可;(3)先把原方程轉(zhuǎn)化為一般式方程,然后利用因式分解法解方程;(4)利用換元法解方程.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解因式分解法的相關(guān)知識(shí),掌握已知未知先分離,因式分解是其次.調(diào)整系數(shù)等互反,和差積套恒等式.完全平方等常數(shù),間接配方顯優(yōu)勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.
(1)請(qǐng)找出截面的圓心;(不寫(xiě)畫(huà)法,保留作圖痕跡.)
(2)若這個(gè)輸水管道有水部分的水面寬AB=16cm,水面最深地方的高度為4cm,求這個(gè)圓形截面的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道:任意一個(gè)有理數(shù)與無(wú)理數(shù)的和為無(wú)理數(shù),任意一個(gè)不為零的有理數(shù)與一個(gè)無(wú)理數(shù)的積為無(wú)理數(shù),而零與無(wú)理數(shù)的積為零.由此可得:如果ax+b=0,其中a、b為有理數(shù),x為無(wú)理數(shù),那么a=0且b=0.
運(yùn)用上述知識(shí),解決下列問(wèn)題:
(1)如果(a-2)+b+3=0,其中a、b為有理數(shù),那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數(shù),求a+2b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,點(diǎn)D的坐標(biāo)是(0, ),以點(diǎn)C為頂點(diǎn)的拋物線y=ax2+bx+c恰好經(jīng)過(guò)x軸上A,B兩點(diǎn).
(1)求A,B,C三點(diǎn)的坐標(biāo);
(2)求過(guò)A,B,C三點(diǎn)的拋物線的解析式;
(3)若將上述拋物線沿其對(duì)稱軸向上平移后恰好過(guò)D點(diǎn),求平移后拋物線的解析式,并指出平移了多少個(gè)單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015攀枝花,第15題,4分)如圖,在邊長(zhǎng)為2的等邊△ABC中,D為BC的中點(diǎn),E是AC邊上一點(diǎn),則BE+DE的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O是等邊三角形ABC內(nèi)的一點(diǎn),∠AOB=130°,∠BOC=α.將△BOC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)60°得到△ADC,連接OD.
(1)判斷△COD的形狀,并加以說(shuō)明理由.
(2)若AD=1,OC=,OA=時(shí),求α的度數(shù).
(3)探究:當(dāng)α為多少度時(shí),△AOD是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)半徑為r的圓形紙片在邊長(zhǎng)為a( )的等邊三角形內(nèi)任意運(yùn)動(dòng),則在該等邊三角形內(nèi),這個(gè)圓形紙片“不能接觸到的部分”的面積是( )
A.
B.
C.
D.πr2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P在以AB為直徑的半圓內(nèi),連接AP、BP,并延長(zhǎng)分別交半圓于點(diǎn)C、D,連接AD、BC并延長(zhǎng)交于點(diǎn)F,作直線PF,下列說(shuō)法一定正確的是( ) ①AC垂直平分BF;②AC平分∠BAF;③FP⊥AB;④BD⊥AF.
A.①③
B.①④
C.②④
D.③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com