(2002•海淀區(qū))如圖,AB是⊙O的直徑,AE平分∠BAF交⊙O于點E,過點E作直線與AF垂直交AF延長線于D點,且交AB延長線于C點.
(1)求證:CD與⊙O相切于點E;
(2)若CE•DE=,AD=3,求⊙O的直徑及∠AED的正切值.

【答案】分析:(1)由題可知,E已經(jīng)是圓上一點,欲證CD為切線,只需證明∠OED=90°即可.
(2)欲求圓的直徑,必須求出半徑OA或OB或OE,可以把題中所求部分抽象到相似三角形中來考慮,借助于比例線段來求解.∠AED的正切值則必須求出AD以及ED的值.
解答:(1)證明:連接OE,
∵AE平分∠BAF,
∴∠OAE=∠EAD.
∵OE=OA,
∴∠OEA=∠OAE.
∴∠OEA=∠EAD.
∴OE∥AD.
∵∠OED=∠ADC=90°且E在⊙O上,
∴CD與⊙O相切于點E.

(2)解:連接BE、EF,
∵AB為直徑,
∴RT△BAE∽RT△EAD.

∵CD與⊙O相切于點E,
∴∠CEB=∠OAE.
∵∠C為公共角,
∴△CBE∽△CEA.

由①②得

∴DE•EC=AD•CB.
∵CE•DE=,AD=3,

由(1)知OE∥AD

設OE=x(x>0),
則CO=,CA=,

∴x=-1(舍去)或x=
∴⊙O直徑為
∴CA=CB+BA=5.
由切割線定理知CE2=CB•CA=


∴tan∠AED=
點評:本題主要考查了切線的判定及相似三角形的判定方法等知識點的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側).若A、B兩點的橫坐標為整數(shù),
(1)確定這個二次函數(shù)的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設四邊形PBCD的面積為S,求S與t的函數(shù)關系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《反比例函數(shù)》(02)(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年北京市海淀區(qū)中考數(shù)學試卷(解析版) 題型:解答題

(2002•海淀區(qū))已知:二次函數(shù)y=x2-kx+k+4的圖象與y軸交于點C,且與x軸的正半軸交于A、B兩點(點A在點B左側).若A、B兩點的橫坐標為整數(shù),
(1)確定這個二次函數(shù)的解析式并求它的頂點坐標;
(2)若點D的坐標是(0,6),點P(t,0)是線段AB上的一個動點,它可與點A重合,但不與點B重合.設四邊形PBCD的面積為S,求S與t的函數(shù)關系式;
(3)若點P與點A重合,得到四邊形ABCD,以四邊形ABCD的一邊為邊,畫一個三角形,使它的面積等于四邊形ABCD的面積,并注明三角形高線的長.再利用“等底等高的三角形面積相等”的知識,畫一個三角形,使它的面積等于四邊形ABCD的面積(畫示意圖,不寫計算和證明過程).

查看答案和解析>>

科目:初中數(shù)學 來源:2002年北京市海淀區(qū)中考數(shù)學試卷(解析版) 題型:填空題

(2002•海淀區(qū))已知函數(shù)y=kx的圖象經(jīng)過點(2,-6),則函數(shù)y=的解析式可確定為   

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(04)(解析版) 題型:解答題

(2002•海淀區(qū))如圖,在菱形ABCD中,AE⊥BC于E點,EC=1,sinB=,求四邊形AECD的周長.

查看答案和解析>>

同步練習冊答案