【題目】如圖,等腰三角形ABC中,AB=AC=5cm,BC=8cm,動點N從點C出發(fā),沿線段CB2cm/s的速度向點B運動,并在達到點B后,立即以同樣的速度返回向點C運動;同時動點M從點B出發(fā),沿折線B﹣A﹣C1cm/s的速度向點C運動,當點N回到點C時,兩個動點同時停止運動.⊙M是以M為圓心,1cm為半徑的圓,設(shè)運動時間為t(s) (t>0)

(1)tanB=   ;

(2)當點M在線段AB上運動,且⊙MBC相切時,求t的值;

(3)當t為何值時,⊙M與折線B﹣A﹣C的兩個交點在等腰三角形ABC對稱軸的同側(cè),且經(jīng)過交點和點N的直線與⊙M相切?

【答案】(1);(2)t=;(3)滿足條件的t的值為s或s或s.

【解析】試題分析:(1)作AH⊥BC用H,根據(jù)等腰三角形的性質(zhì)以及勾股定理分別求得BH、AH的長,再利用正切的定義即可求得;

(2)作MK⊥BC于K,根據(jù)⊙M與BC相切,則可得MK=1,再根據(jù)sinB=,即可得;

(3)分0<t≤4, 4<t≤8,進行討論即可得

試題解析(1)如圖1中,作AH⊥BC用H.

∵AB=AC=5,AH⊥BC,

∴BH=CH=BC=4,AH==3,

∴tanB=

故答案為: ;

(2)如圖2中,作MK⊥BC于K,

∵⊙M與BC相切,

∴MK=1,

∵sinB=

∴BM=,

∴t=s時,⊙M與BC相切;

(3)如圖設(shè)⊙M交AB于P、G,連接GN,

①當0<t≤4時,如果NG是⊙M的切線,則GN⊥AB,則有cosB=,

,

解得:t=

②當PN是切線時,同法可得, ,

解得t=

③當4<t≤8時,同法可得,

解得t=3(不合題意舍棄)或t=,

綜上所述,滿足條件的t的值為s或s或s.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在四邊形ABCD中,AB3CD,ABCDCEDA,DFCB

1)求證:四邊形CDEF是平行四邊形;

2)填空:

當四邊形ABCD滿足條件   時(僅需一個條件),四邊形CDEF是矩形;

當四邊形ABCD滿足條件   時(僅需一個條件),四邊形CDEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,正比例函數(shù)y=x的圖象與一次函數(shù)y=kx﹣k的圖象的交點坐標為A(m,2).

(1)求m的值和一次函數(shù)的解析式;

(2)設(shè)一次函數(shù)y=kx﹣k的圖象與y軸交于點B,求△AOB的面積;

(3)直接寫出使函數(shù)y=kx﹣k的值大于函數(shù)y=x的值的自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,某辦公大樓正前方有一根高度是15米的旗桿ED,從辦公大樓頂端A測得旗桿頂端E的俯角α是45°,旗桿低端D到大樓前梯砍底邊的距離DC是20米,梯坎坡長BC是12米,梯坎坡度i=1:,則大樓AB的高度為_________米.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】己知:矩形ABCD的兩邊AB,BC的長是關(guān)于x的方程x2﹣mx+=0的兩個實數(shù)根.

(1)當m為何值時,矩形ABCD是正方形?求出這時正方形的邊長;

(2)若AB的長為2,那么矩形ABCD的周長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,邊長為2的正方形紙片ABCD中,點M為邊CD上一點(不與CD重合),將ADM沿AM折疊得到AME,延長ME交邊BC于點N,連結(jié)AN

1)猜想∠MAN的大小是否變化,并說明理由;

2)如圖1,當N點恰為BC中點時,求DM的長度;

3)如圖2,連結(jié)BD,分別交AN,AM于點Q,H.若BQ,求線段QH的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABCD中,ABDC,AB=AD,對角線AC,BD交于點O,AC平分∠BAD,過點CCEDBAB的延長線于點E,連接OE

1)求證:四邊形ABCD是菱形;

2)若∠DAB=60°,且AB=4,求OE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形 ABCD 的對角線交于點 E,且 AEEC,BEED,以 AD 為直徑的半圓過點 E,圓心 O

1)如圖①,求證:四邊形 ABCD 為菱形;

2)如圖②,若 BC 的延長線與半圓相切于點 F,且直徑 AD6,求AE 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分6分)某公司調(diào)查某中學學生對其環(huán)保產(chǎn)品的了解情況,隨機抽取該校部分學生進行問卷,結(jié)果分“非常了解”、“比較了解”、“一般了解”、“不了解”四種類型,分別記為A、B、C、D.根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

(1)本次問卷共隨機調(diào)查了 名學生,扇形統(tǒng)計圖中m= .

(2)請根據(jù)數(shù)據(jù)信息補全條形統(tǒng)計圖;

(3)若該校有1000名學生,估計選擇“非常了解”、“比較了解”共約有多少人?

查看答案和解析>>

同步練習冊答案