【題目】[閱讀]

在平面直角坐標(biāo)系中,以任意兩點(diǎn)Px1y1)、Qx2y2)為端點(diǎn)的線段中點(diǎn)坐標(biāo)為,).

[運(yùn)用]

(1)如圖,矩形ONEF的對(duì)角線相交于點(diǎn)MON、OF分別在x軸和y軸上O為坐標(biāo)原點(diǎn),點(diǎn)E的坐標(biāo)為(4,3),則點(diǎn)M的坐標(biāo)為

(2)在直角坐標(biāo)系中,A(﹣1,2),B(3,1),C(1,4)三點(diǎn),另有一點(diǎn)D與點(diǎn)A、B、C構(gòu)成平行四邊形的頂點(diǎn),求點(diǎn)D的坐標(biāo)

【答案】M(2,1.5);(2)D(1,﹣1)或D(﹣3,5)或D(5,3).

【解析】試題分析:(1)先根據(jù)四邊形ONEF是矩形,所以矩形的性質(zhì)可以知道點(diǎn)M是對(duì)角線OE的中點(diǎn),根據(jù)題中給出的線段的中點(diǎn)坐標(biāo)公式即可得出M點(diǎn)的坐標(biāo);
(2)根據(jù)題意畫(huà)出圖形,然后分三種情況:當(dāng)AB為對(duì)角線時(shí), ②當(dāng)BC為對(duì)角線時(shí), ③當(dāng)AC為對(duì)角線時(shí),求出點(diǎn)D的坐標(biāo).

:(1)四邊形ONEF是矩形,,

點(diǎn)M是對(duì)角線OE的中點(diǎn),

,.

因此,本題正確答案是:;

(2)如圖所示:

根據(jù)平行四邊形的對(duì)角線互相平分可得:

設(shè)D點(diǎn)的坐標(biāo)為,

以點(diǎn)A、B、CD構(gòu)成的四邊形是平行四邊形,

當(dāng)AB為對(duì)角線時(shí),

,,,

,

,
,,

點(diǎn)坐標(biāo)為,

當(dāng)BC為對(duì)角線時(shí),

,,,

,,

D點(diǎn)坐標(biāo)為.

當(dāng)AC為對(duì)角線時(shí),

,,,

,,

D點(diǎn)坐標(biāo)為:,

綜上所述,符合要求的點(diǎn)有:,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題探究:
(1)如圖①,點(diǎn)M、N分別為四邊形ABCD邊AD、BC的中點(diǎn),則四邊形BNDM的面積與四邊形ABCD的面積關(guān)系是

(2)如圖②,在四邊形ABCD中,點(diǎn)M、N分別為AD、BC的中點(diǎn),MB交AN于點(diǎn)P,MC交DN于點(diǎn)Q,若S△四邊形MPNQ=10,則SABP+SDCQ的值為多少?
(3)問(wèn)題解決
在矩形ABCD中,AD=2,DC=4,點(diǎn)M、N為AB上兩點(diǎn),且滿足BN=2AM=2MN,連接MC、MD.若點(diǎn)P為CD上任意一點(diǎn),連接AP、NP,使得AP與DM交于點(diǎn)E,NP與MC交于點(diǎn)F,則四邊形MEPF的面積是否存最大值?若存在,請(qǐng)求出最大面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過(guò)點(diǎn)EEF∥AB,交BC于點(diǎn)F

1)求證:四邊形DBFE是平行四邊形;

2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A(t+1,t+2),點(diǎn)B(t+3,t+1),將點(diǎn)A向右平移3個(gè)長(zhǎng)度單位,再向下平移4個(gè)長(zhǎng)度單位得到點(diǎn)C.

(1)用t表示點(diǎn)C的坐標(biāo)為_______;t表示點(diǎn)By軸的距離為___________;

(2)若t=1時(shí),平移線段AB,使點(diǎn)A、B到坐標(biāo)軸上的點(diǎn)、處,指出平移的方向和距離,并求出點(diǎn)的坐標(biāo);

(3)若t=0時(shí),平移線段ABMN點(diǎn)A與點(diǎn)M對(duì)應(yīng)),使點(diǎn)落在軸的負(fù)半軸上,三角形MNB的面積為4,試求點(diǎn)M、N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC和△DEF中,將△DEF按要求擺放,使得∠D的兩條邊分別經(jīng)過(guò)點(diǎn)B和點(diǎn)C

1)當(dāng)將△DEF如圖1擺放時(shí),若∠A=50°,∠E+F=100°,則∠D= ;∠ABD+ACD

2)當(dāng)將△DEF如圖2擺放時(shí),∠A=m°,∠E+F=n°,請(qǐng)求出∠ABD+ACD的度數(shù)(用含m、n的代數(shù)式表示)

3)能否將△DEF擺放到某個(gè)位置,使得BD、CD同時(shí)平分∠ABC和∠ACB.若能,求出∠A、∠E、∠F滿足的關(guān)系?若不能,請(qǐng)說(shuō)明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明騎單車(chē)上學(xué),當(dāng)他騎了一段路時(shí),想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的某書(shū)店,買(mǎi)到書(shū)后繼續(xù)去學(xué)校.以下是他本次上學(xué)所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:

1)小明家到學(xué)校的路程是 米.

2)小明在書(shū)店停留了 分鐘.

3)本次上學(xué)途中,小明一共行駛了 米.一共用了 分鐘.

4)我們認(rèn)為騎單車(chē)的速度超過(guò) 300 /分就超過(guò)了安全限度.問(wèn):在整個(gè)上學(xué)途中哪個(gè)時(shí)間段小明的騎車(chē)速度最快,最快速度為多少,在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,點(diǎn)坐標(biāo)為

1)寫(xiě)出點(diǎn)、的坐標(biāo):________)、____,____

2)將先向左平移個(gè)單位長(zhǎng)度,再向上平移個(gè)單位長(zhǎng)度,得到,畫(huà)出

3)寫(xiě)出三個(gè)頂點(diǎn)坐標(biāo)______)、___,___)、______);

4)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知是等邊三角形,點(diǎn)為射線上任意一點(diǎn)(點(diǎn)與點(diǎn)不重合),連結(jié),將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到線段,連結(jié)并延長(zhǎng)交射線于點(diǎn)

1)如圖1,當(dāng)時(shí),________,猜想________;

2)如圖2,當(dāng)點(diǎn)為射線上任意一點(diǎn)時(shí),猜想的度數(shù),并說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=ax+b和反比例函數(shù)y= 在同一平面直角坐標(biāo)系中的圖象如圖所示,則二次函數(shù)y=ax2+bx+c的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案