【題目】校園安全受到全社會的廣泛關(guān)注,某市某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了尚不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

1)在這次活動中抽查了多少名中學生?

2)若該中學共有學生1600人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對校園安全知識達到“了解”程度的人數(shù).

3)若從對校園安全知識達到“了解程度的2個女生和2個男生中隨機抽取2人參加校園安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

【答案】(1)80(2)400(3)

【解析】

1)用基本了解的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);

2)計算出樣本中了解程度的人數(shù),然后用1600乘以基本中了解程度的人數(shù)的百分比可估計該中學學生中對校園安全知識達到了解程度的人數(shù).

3)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出恰好抽到1個男生和1個女生的結(jié)果數(shù),然后利用概率公式求解.

解:(132÷40%80(名),

所以在這次活動中抽查了80名中學生;

2了解的人數(shù)為8032181020

1600×400,

所以估計該中學學生中對校園安全知識達到了解程度的人數(shù)為400人;

3)由題意列樹狀圖:

由樹狀圖可知,在 4 名同學中隨機抽取 2 名同學的所有等可能的結(jié)果有12 種,恰好抽到一男一女(記為事件A)的結(jié)果有8種,

所以PA)=

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線軸,軸分別相交于,兩點,與雙曲線)相交于點,過軸于點,,在點右側(cè)的雙曲線上取一點,作軸于,當以點,為頂點的三角形與相似,則點的坐標是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,購進時的單價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每上漲1元,就會少售出10件玩具.

1)不妨設該種品牌玩具的銷售單價為x元(x30),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

銷售單價(元)

xx30

銷售量y(件)

   

銷售玩具獲得利潤w(元)

   

2)在第(1)問的條件下,若商場獲得了8750元銷售利潤,求該玩具銷售單價x應定為多少元?

3)在第(1)問的條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于32元,且商場要完成不少于400件的銷售任務,求:商場銷售該品牌玩具獲得最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1是某小區(qū)入口實景圖,圖2是該入口抽象成的平面示意圖.已知入口BC3.9米,門衛(wèi)室外墻AB上的O點處裝有一盞路燈,點O與地面BC的距離為3.3米,燈臂OM長為1.2米(燈罩長度忽略不計),∠AOM60°.

1)求點M到地面的距離;

2)某搬家公司一輛總寬2.55米,總高3.5米的貨車從該入口進入時,貨車需與護欄CD保持0.65米的安全距離,此時,貨車能否安全通過?若能,請通過計算說明;若不能,請說明理由.(參考數(shù)據(jù):1.73,結(jié)果精確到0.01米)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在中,分別是的中點,分別是對角線上的四等分點,順次連接.

1)求證:四邊形是平行四邊形;

2)當滿足____ 條件時,四邊形是菱形;

3)若,

①探究四邊形的形狀,并說明理由;

②當時,直接寫出四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是拋物線型拱橋,當拱頂離水面2m時,水面寬4m,水面下降2m,水面寬_____m.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2bxc(a≠0)的圖象如圖所示,根據(jù)圖象解答下列問題.

(1)寫出方程ax2bxc0的兩個根;

(2)寫出不等式ax2bxc0的解集;

(3)寫出yx的增大而減小的自變量x的取值范圍;

(4)若方程ax2bxck有兩個不相等的實數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本小題滿分10分)某市政府大力扶持大學生創(chuàng)業(yè).李明在政府的扶持下投資銷一種價為每件20元的護眼燈.銷售過程中發(fā)現(xiàn),每月銷售量y(件)與銷售單價x)之間的關(guān)系可近似的看作一次函數(shù)

(1)李明每月獲得利潤為w,當銷售單價定為多少元時,每月可獲得最大利潤?

(2)如果李明想要每月獲得2000元的利潤,那么銷售單價應定為多少元?

(3)根據(jù)物價部門規(guī)定,這種護眼燈的銷售單價不得高于32元,如果李明想要每月獲得的利潤不低于2000元,那么他每月的成本最少需要多少元?

(成本=進價×銷售量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+5(k為常數(shù),且k≠0)的圖像與反比例函數(shù)y=-的函數(shù)交于A、B(4b)兩點.

(1)求一次函數(shù)的表達式及A點的坐標;

(2)直接寫出一次函數(shù)的值大于反比例函數(shù)的值時,自變量x的取值范圍.

查看答案和解析>>

同步練習冊答案