某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計劃用它們生產(chǎn)A、B兩種產(chǎn)品共50件,已知每生產(chǎn)一件A種產(chǎn)品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產(chǎn)一件B種產(chǎn)品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產(chǎn)A、B兩種產(chǎn)品,有哪幾種不同的方案?
(2)設(shè)生產(chǎn)兩種產(chǎn)品總利潤為y(元),其中生產(chǎn)A中產(chǎn)品x(件),試寫出y與x之間的函數(shù)解析式.
(3)利用函數(shù)性質(zhì)說明,采用(1)中哪種生產(chǎn)方案所獲總利潤最大?最大利潤是多少?

(1)符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;(2);(3)第一種方案,45000.

解析試題分析:(1)關(guān)系式為:A種產(chǎn)品需要甲種原料數(shù)量+B種產(chǎn)品需要甲種原料數(shù)量≤360;A種產(chǎn)品需要乙種原料數(shù)量+B種產(chǎn)品需要乙種原料數(shù)量≤290,把相關(guān)數(shù)值代入即可;解不等式,得到關(guān)于x的范圍,根據(jù)整數(shù)解可得相應(yīng)方案
(2)總獲利=700×A種產(chǎn)品數(shù)量+1200×B種產(chǎn)品數(shù)量;
(3)根據(jù)函數(shù)的增減性和(1)得到的取值可得最大利潤.
試題解析:(1);解第一個不等式得:,解第二個不等式得:,∴,∵為正整數(shù),∴=30、31、32,∴50﹣30=20,50﹣31=19,50﹣32=18,∴符合的生產(chǎn)方案有三種,分別為①生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件;②生產(chǎn)A產(chǎn)品31件,B產(chǎn)品19件;③生產(chǎn)A產(chǎn)品32件,B產(chǎn)品18件;
(2),
(3)∵,﹣500<0,而,∴當(dāng)越小時,總利潤越大,即當(dāng)時,最大利潤為:元.∴生產(chǎn)A產(chǎn)品30件,B產(chǎn)品20件使生產(chǎn)A、B兩種產(chǎn)品的總獲利最大,最大利潤是45000元.
考點:1.一元一次不等式組的應(yīng)用;2.方案型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

某物流公司的甲、乙兩輛貨車分別從A、B兩地同時相向而行,并以各自的速度勻速行駛,途徑配貨站C,甲車先到達C地,并在C地用1小時配貨,然后按原速度開往B地,乙車從B地直達A地,下圖是甲、乙兩車間的距離(千米)與乙車出發(fā)(時)的函數(shù)的部分圖像.

(1)A、B兩地的距離是          千米,乙車出發(fā)         小時與甲相遇;
(2)求乙車出發(fā)1.5小時后直至到達A地的過程中,的函數(shù)關(guān)系式及的取值范圍;
(3)乙車出發(fā)多長時間,兩車相距100千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

若方程組的解滿足,求關(guān)于的函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線、直線,直線、分別交x軸于B、C兩點,、相交于點A.

(1)求A、B、C三點坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某農(nóng)戶種植一種經(jīng)濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關(guān)系式圖

(1)第20天的總用水量為多少米3?
(2)當(dāng)x≥20時,求y與x之間的函數(shù)關(guān)系式;
(3)種植時間為多少天時,總用水量達到7000米3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知一次函數(shù)的圖象經(jīng)過點,且與函數(shù)的圖象相交于點
(1)求的值;
(2)若函數(shù)的圖象與軸的交點是B,函數(shù)的圖象與軸的交點是C,求四邊形的面積(其中O為坐標(biāo)原點).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點C與點A重合,點B落在點B′處(如圖),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請說明理由.

(2)實踐與應(yīng)用:以點O為坐標(biāo)原點,分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點B的坐標(biāo)為(9,3),請求出折痕EF的長及EF所在直線的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

(2013年四川南充8分)某商場購進一種每件價格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:

(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫出每天的利潤W與銷售單價x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會將售價定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖表示一個正比例函數(shù)與一個一次函數(shù)的圖象,它們交于點A(4,3),一次函數(shù)的圖象與軸交于點B,且OA=OB,求這兩個函數(shù)的關(guān)系式及兩直線與軸圍成的三角形的面積.

查看答案和解析>>

同步練習(xí)冊答案