【題目】如圖,在平面直角坐標(biāo)系中,以(1,0)為圓心的⊙P與y軸相切于原點(diǎn)O,過(guò)點(diǎn)A(-1,0)的直線AB與⊙P相切于點(diǎn)B.
(1)求AB的長(zhǎng).
(2)求AB、OA與所圍成的陰影部分面積.
(3)求直線AB的解析式.
【答案】(1);(2);(3).
【解析】
1)連接PB,由于A、P的坐標(biāo)已知,因此求出OA、AP的長(zhǎng)度,根據(jù)直線AB與⊙P相切于點(diǎn)B,⊙P與y軸相切于原點(diǎn)O,利用勾股定理定理可以求出AB的長(zhǎng)度;
(2)連接OB,利用(1)的結(jié)果可以得到∠OPB=60°,根據(jù)即可求出陰影部分面積;
(3)設(shè)直線AB與y軸相交于點(diǎn)C,根據(jù)已知條件可以得到∠BAP=30°,而OA=1,因此可以求出CO的長(zhǎng)度,即求出了C的坐標(biāo),而A的坐標(biāo)已知,再利用待定系數(shù)法即可求出AB的解析式;
解:(1)連接PB
∵點(diǎn)A、P的坐標(biāo)分別為(-1,0)、(1,0),
∴OA=OP=1,
∴PA=2.
∵直線AB與⊙P相切于點(diǎn)B,
∴PB⊥AB,
∴∠ABP=90°
又∵⊙P與y軸相切于原點(diǎn)O,
∴PB=OP=1,
∴;
(2)連接OB
∵∠ABP=90°,OA=OP,
∴,
又∵PB=OP,
∴PB=OP=OB,
∴∠OPB=60°,
∴;
(3)如圖示,設(shè)直線AB與y軸相交于點(diǎn)C
∵∠OPB=60°,∠ABP=90°,
∴∠BAP=180°-60°-90°=30°,
∴在Rt△OAC中,,
設(shè)OC=x,則AC=2x,
依題意得(2x)2=x2+12,
解得
∵x>0,
∴;
∴點(diǎn)C坐標(biāo)為(0,),
可設(shè)直線AB的解析式為(k≠0),
∵直線AB過(guò)點(diǎn)A(-1,0),
∴,
∴,
∴直線AB的解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一條頂點(diǎn)坐標(biāo)為的拋物線與y軸交于點(diǎn)C(0,5).與x軸交于點(diǎn)A和點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)),有一寬度為1.長(zhǎng)崖足夠的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對(duì)邊交拋物線于點(diǎn)P和點(diǎn)Q(點(diǎn)P在點(diǎn)Q右側(cè)),交直線AC于點(diǎn)M和點(diǎn)N(點(diǎn)M在點(diǎn)N右側(cè)),交x軸于點(diǎn)E和點(diǎn)F(點(diǎn)E在點(diǎn)F右側(cè))
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)M和點(diǎn)N都在線段AC上時(shí),連接MF,如果,求點(diǎn)Q的坐標(biāo);
(3)在矩形平移的過(guò)程中,當(dāng)以點(diǎn)P、Q、M、N為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫(xiě)出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)y=(k≠0)的圖象經(jīng)過(guò)△ABD的頂點(diǎn)A,B,交BD于點(diǎn)C,AB經(jīng)過(guò)原點(diǎn),點(diǎn)D在y軸上,若BD=4CD,△OBD的面積為15,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)的圖像與x軸交于A,B兩點(diǎn)(點(diǎn)B在點(diǎn)A左側(cè)),與y軸負(fù)半軸相交于點(diǎn)C,且tan∠ABC=3,
(1)求該二次函數(shù)的解析式;
(2)設(shè)E是位于第四象限拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH,則在點(diǎn)E運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)設(shè)點(diǎn)P是x軸下方的拋物線上的一個(gè)動(dòng)點(diǎn),連接PA、PC,求△PAC面積的取值范圍,當(dāng)△PAC面積為整數(shù)時(shí),這樣的△PAC有幾個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=﹣m與y軸交于點(diǎn)A,直線a:y=x+m與y軸交于點(diǎn)B,拋物線y=x2+mx的頂點(diǎn)為C,且與x軸左交點(diǎn)為D(其中m>0).
(1)當(dāng)AB=12時(shí),在拋物線的對(duì)稱軸上求一點(diǎn)P使得△BOP的周長(zhǎng)最小;
(2)當(dāng)點(diǎn)C在直線l上方時(shí),求點(diǎn)C到直線l距離的最大值;
(3)若把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.當(dāng)m=2020時(shí),求出在拋物線和直線a所圍成的封閉圖形的邊界上的“整點(diǎn)”的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市中招體育測(cè)試改革,其中籃球和足球作為選考項(xiàng)目,某商店抓住這一商機(jī)決定購(gòu)進(jìn)一批籃球和足球共200個(gè),這兩種球的進(jìn)價(jià)和售價(jià)如下表所示:
籃球 | 足球 | |
進(jìn)價(jià)(元/個(gè)) | 180 | 150 |
售價(jià)(元/個(gè)) | 250 | 200 |
(1)若商店計(jì)劃銷售完這批球后能獲利11600元,問(wèn)籃球和足球應(yīng)分別購(gòu)進(jìn)多少個(gè)?
(2)設(shè)購(gòu)進(jìn)籃球個(gè),獲利為元,求與之間的函數(shù)關(guān)系;
(3)若商店計(jì)劃投入資金不多于31560元且銷售完這批球后商店獲利不少于11000元,請(qǐng)問(wèn)有哪幾種購(gòu)球方案,并寫(xiě)出獲利最大的購(gòu)球方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CE∥AD,交AN于點(diǎn)E.求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知,,三點(diǎn),其中,曲線分別與線段,交于點(diǎn),.
(1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);
(2)當(dāng)時(shí),求的面積;
(3)若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】配餐公司為某學(xué)校提供A、B、C三類午餐供師生選擇,三類午餐每份的價(jià)格分別是:A餐5元,B餐6元,C餐8元.為做好下階段的營(yíng)銷工作,配餐公司根據(jù)該校上周A、B、C三類午餐購(gòu)買情況,將所得的數(shù)據(jù)處理后,制成統(tǒng)計(jì)表(如下左圖);根據(jù)以往銷售量與平均每份利潤(rùn)之間的關(guān)系,制成統(tǒng)計(jì)圖(如下右圖).
請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)該校師生上周購(gòu)買午餐費(fèi)用的眾數(shù)是 元;
(2)配餐公司上周在該校銷售B餐每份的利潤(rùn)大約是 元;
(3)請(qǐng)你計(jì)算配餐公司上周在該校銷售午餐約盈利多少元.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com