【題目】如圖1,在四邊形ABCD中,AD∥BC,∠B=∠C=60°,P、Q同時從B出發(fā),以每秒1單位長度分別沿B﹣A﹣D﹣C和B﹣C﹣D方向運動至相遇時停止,設(shè)運動時間為t(秒),△BPQ的面積為S(平方單位),S與t的函數(shù)圖象如圖2所示,則下列結(jié)論錯誤的個數(shù)( )
①當(dāng)t=4秒時,S=4 ②AD=4
③當(dāng)4≤t≤8時,S=2 t ④當(dāng)t=9秒時,BP平分四邊形ABCD的面積.
A.1個
B.2個
C.3個
D.4個
【答案】C
【解析】解:由圖2所示,動點運動過程分為三個階段:
(1)OE段,函數(shù)圖象為拋物線,運動圖形如答圖1﹣1所示.
此時點P在線段AB上、點Q在線段BC上運動.
△BPQ為等邊三角形,其邊長BP=BQ=t,高h(yuǎn)= t,
∴S= BQh= t t= t2 .
由函數(shù)圖象可知,當(dāng)t=4秒時,S=4 ,故選項A正確.
(2)EF段,函數(shù)圖象為直線,運動圖形如答圖1﹣2所示.
此時點P在線段AD上、點Q在線段BC上運動.
由函數(shù)圖象可知,此階段運動時間為4s,
∴AD=1×4=4,故選項B正確.
設(shè)直線EF的解析式為:S=kt+b,將E(4,4 )、F(8,8 )代入得:
,
解得 ,
∴S= t,故選項C錯誤.
(3)FG段,函數(shù)圖象為直線,運動圖形如答圖1﹣3所示.
此時點P、Q均在線段CD上運動.
設(shè)梯形高為h,則S梯形ABCD= (AD+BC)h= (4+8)h=6h;
當(dāng)t=9s時,DP=1,則CP=3,
∴S△BCP= S△BCD= × ×8×h=3h,
∴S△BCP= S梯形ABCD , 即BP平分梯形ABCD的面積,故選項D正確.
綜上所述,錯誤的結(jié)論是C.
故選:C.
根據(jù)等腰梯形的性質(zhì)及動點函數(shù)圖象的性質(zhì),綜合判斷可得答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點E是邊CD上一點,且BC=EC,CF⊥BE交AB于點F,P是EB延長線上一點,下列結(jié)論: ①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,
其中正確結(jié)論的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點的坐標(biāo)為(3,2),過P點的直線AB分別交x軸和y軸的正半軸于A,B兩點,作PM⊥x軸于M點,作PN⊥y軸于N點,若△PAM的面積與△PBN的面積的比為 ,則直線AB的解析式為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉(zhuǎn)到△A2B2C(如圖3),點P2是A2C與AP1的交點.當(dāng)旋轉(zhuǎn)角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關(guān)系?.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售甲、乙兩種糖果,購買3千克甲種糖果和1千克乙種糖果共需44元,購買1千克甲種糖果和2千克乙種糖果共需38元.
(1)求甲、乙兩種糖果的價格;
(2)若購買甲、乙兩種糖果共20千克,且總價不超過240元,問甲種糖果最少購買多少千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了弘揚優(yōu)秀傳統(tǒng)文化,某中學(xué)舉辦了文化知識大賽,其規(guī)則是:每位參賽選手回答100道選擇題,答對一題得1分,不答或錯答不扣分,賽后對全體參賽選手的答題情況進(jìn)行了相關(guān)統(tǒng)計,整理并繪制成如下圖表:
組別 | 分?jǐn)?shù)段 | 頻數(shù)(人) | 頻率 |
1 | 50≤x<60 | 30 | 0.1 |
2 | 60≤x<70 | 45 | 0.15 |
3 | 70≤x<80 | 60 | n |
4 | 80≤x<90 | m | 0.4 |
5 | 90≤x<100 | 45 | 0.15 |
請根據(jù)以圖表信息,解答下列問題:
(1)表中m= , n=;
(2)補全頻數(shù)分布直方圖;
(3)在得分前5名的同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)參加區(qū)級的比賽,用樹狀圖或列表法求選出的兩名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點A為某封閉圖形邊界上一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周.設(shè)點P運動的時間為x,線段AP的長為y.表示y與x的函數(shù)關(guān)系的圖象大致如圖,則該封閉圖形可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,大樓AN上懸掛一條幅AB,小穎在坡面D處測得條幅頂部A的仰角為30°,沿坡面向下走到坡腳E處,然后向大樓方向繼續(xù)行走10米來到C處,測得條幅的底部B的仰角為45°,此時小穎距大樓底端N處20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面內(nèi),E、C、N在同一條直線上,求條幅的長度(結(jié)果精確到1米)(參考數(shù)據(jù):≈1.73,≈1.41)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com