【題目】如圖,在邊長為7的正方形ABCD中放入五個(gè)小正方形后形成一個(gè)中心對稱圖形,其中兩頂點(diǎn)E、F分別在邊BC、AD上,則放入的五個(gè)小正方形的面積之和為______

【答案】17

【解析】

過點(diǎn)于點(diǎn),可知,再根據(jù)題意可知,,所以,由此可得,然后根據(jù)相似的比例關(guān)系可得,由此設(shè),則,設(shè),則,再將、表示出來,從而得到的值,在中求出,再根據(jù)比例求出,最后計(jì)算2個(gè)小正方形面積和3個(gè)小正方形構(gòu)成矩形的面積即可得出答案.

過點(diǎn)于點(diǎn),如圖,

,

,

,

,

,

,

設(shè),則,

設(shè),則,

在正方形ABCD中放入五個(gè)小正方形后形成一個(gè)中心對稱圖形,

,

,

四邊形為正方形,

,即,

,

,

,,

中,可得,

,

五個(gè)小正方形的面積為:.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC、BD相交于點(diǎn)O,∠A=∠D,要使得△AOB≌△DOC,還需補(bǔ)充一個(gè)條件,下面補(bǔ)充的條件不一定正確的是( 。

A.OAODB.ABDCC.OBOCD.ABO=∠DCO

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),.

1)若滿足.

①直接寫出____________.

②如圖1,為點(diǎn)上方一點(diǎn),連接,在軸右側(cè)作等腰,連接并延長交軸于點(diǎn),當(dāng)點(diǎn)上方運(yùn)動(dòng)時(shí),求的面積;

2)如圖2,若,點(diǎn)在邊上,且上一點(diǎn),且,連接,過點(diǎn)的垂線交于點(diǎn),交于點(diǎn).連接,當(dāng),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:

1)問題發(fā)現(xiàn):如圖1,均為等邊三角形,點(diǎn)、在同一直線上,連接.填空:①的度數(shù)為______(直接寫出結(jié)論,不用證明).

②線段、之間的數(shù)量關(guān)系是______(直接寫出結(jié)論,不用證明).

2)拓展探究:如圖2,均為等腰直角三角形,,點(diǎn)、、在同一直線上,邊上的高,連接.請判斷的度數(shù)及線段、之間的數(shù)量關(guān)系,并說明理由.

3)解決問題:在(2)問的條件下,若,,試求的面積(用,表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

1[x(x22x3)3x]÷x2;

2x(4x3y)(2xy)(2xy);

35a2·(2ab2)2;

4(a2b3c)(a2b3c)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解決下列兩個(gè)問題:

(1)如圖1,在△ABC中,AB4,AC6,BC7,EF垂直平分BC,P為直線EF上一動(dòng)點(diǎn),PA+PB的最小值為______,并在圖中標(biāo)出當(dāng)PA+PB取最小值時(shí)點(diǎn)P的位置.

(2)如圖2,點(diǎn)M、N在∠BAC的內(nèi)部,請?jiān)凇?/span>BAC的內(nèi)部求作一點(diǎn)P,使得點(diǎn)P到∠BAC兩邊的距離相等,且使PMPN.(尺規(guī)作圖,保留作圖痕跡,無需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABAC,DEAB,AC=BE,BC=BD,

1)求證:BCBD;

2)若點(diǎn)FBC,BD的垂直平分線的交點(diǎn),連接FA、FE.填空:判斷AFE的形狀是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,是半圓上的一點(diǎn),平分,,垂足為于點(diǎn),連接

判斷的位置關(guān)系,并證明你的結(jié)論;

的中點(diǎn),的半徑為,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtACB中,∠ACB90°,△ABC的角平分線AD、BE相交于點(diǎn)P,過PPFADBC的延長線于點(diǎn)F,交AC于點(diǎn)H,則下列結(jié)論:①∠APB135°;②PFPA;③AH+BDAB;④S四邊形ABDESABP,其中正確的是( 。

A.①③B.①②④C.①②③D.②③

查看答案和解析>>

同步練習(xí)冊答案