【題目】如圖,四邊形ABCD與四邊形CEFG都是矩形,點E,G分別在邊CD,CB上,點FAC上,AB3BC4

1)求的值;

2)把矩形CEFG繞點C順時針旋轉(zhuǎn)到圖的位置,PAFBG的交點,連接CP

(Ⅰ)求的值;

(Ⅱ)判斷CPAF的位置關(guān)系,并說明理由.

【答案】1;(2)(Ⅰ);(Ⅱ)CPAF,理由:見解析.

【解析】

(1)根據(jù)矩形的性質(zhì)得到∠B90°,根據(jù)勾股定理得到AC5,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;

(2)()連接CF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠BCG=∠ACF,根據(jù)相似三角形的判定和性質(zhì)定理得到結(jié)論;

()根據(jù)相似三角形的性質(zhì)得到∠BGC=∠AFC,推出點C,F,G,P四點共圓,根據(jù)圓周角定理得到∠CPF=∠CGF90°,于是得到結(jié)論.

(1)∵四邊形ABCD是矩形,

∴∠B90°,

AB3BC4,

AC5,

四邊形CEFG是矩形,

∴∠FGC90°

GFAB,

∴△CGF∽△CBA

,

FGAB,

;

(2)(Ⅰ)連接CF

把矩形CEFG繞點C順時針旋轉(zhuǎn)到圖的位置,

∴∠BCGACF

,

∴△BCG∽△ACF,

;

(Ⅱ)CPAF,

理由:∵△BCG∽△ACF,

∴∠BGCAFC

C,FG,P四點共圓,

∴∠CPFCGF90°,

CPAF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對的圓周角的度數(shù)是( 。

A. 30° B. 60° C. 30°150° D. 60°120°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則

①二次函數(shù)的最大值為a+b+c;

a﹣b+c<0;

b2﹣4ac<0;

④當(dāng)y>0時,﹣1<x<3,其中正確的個數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市對今年元旦期間銷售A、B、C三種品牌的綠色雞蛋情況進(jìn)行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:

1)該超市元旦期間共銷售   個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應(yīng)的扇形圓心角是   度;

2)補(bǔ)全條形統(tǒng)計圖;

3)如果該超市的另一分店在元旦期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水產(chǎn)養(yǎng)殖戶進(jìn)行小龍蝦養(yǎng)殖已知每千克小龍蝦養(yǎng)殖成本為6元,在整個銷售旺季的80天里,銷售單價千克與時間第之間的函數(shù)關(guān)系為,日銷售量千克與時問第之間的函數(shù)關(guān)系如圖所示.

求日銷售量y與時間t的函數(shù)關(guān)系式;

求利潤w與時間t的函數(shù)關(guān)系式;

哪一天的日銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與雙曲線交于A、B兩點,與x軸、y軸分別交于E、F兩點,連接OA、OB,若 ,則______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個測速儀,檢測點設(shè)在距離公路10m的A處,測得一輛汽車從B處行駛到C處所用的時間為0.9秒.已知B=30°,C=45°

(1)求B,C之間的距離;(保留根號)

(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點A在反比例函數(shù)y(x0)的圖象上,直線PQx軸,y軸交于P、Q兩點,過點ACDx軸,交y軸于點C,交直線PQ于點D,過點AEBy軸交x軸于點B,交直線PQ于點E,若CEBDCAAE12QEDP19,則陰影部分的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,,于點H,點DAH上,且,連接BD

如圖1,將繞點H旋轉(zhuǎn),得到B、D分別與點E、F對應(yīng),連接AE,當(dāng)點F落在AC上時不與C重合,求AE的長;

如圖2,是由繞點H逆時針旋轉(zhuǎn)得到的,射線CFAE相交于點G,連接GH,試探究線段GHEF之間滿足的等量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案