【題目】如圖,已知是等邊三角形的外接圓,點(diǎn)在圓上,在的延長(zhǎng)線上有一點(diǎn),使,.

(1)求證:的切線;

(2)求證:.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】(1)根據(jù)等邊三角形的性質(zhì)可得:∠OAC=30°,BCA=60°,證明∠OAE=90°,可得AE是⊙O的切線;

(2)先根據(jù)等邊三角形性質(zhì)得:AB=AC,BAC=ABC=60°,由四點(diǎn)共圓的性質(zhì)得:∠ADF=ABC=60°,得ADF是等邊三角形,證明BAD≌△CAF,可得結(jié)論.

(1)連接OD,

∵⊙O是等邊三角形ABC的外接圓,

∴∠OAC=30°,BCA=60°,

AEBC,

∴∠EAC=BCA=60°,

∴∠OAE=OAC+EAC=30°+60°=90°,

AE是⊙O的切線;

(2)∵△ABC是等邊三角形,

AB=AC,BAC=ABC=60°,

A、B、C、D四點(diǎn)共圓,

∴∠ADF=ABC=60°,

AD=DF,

∴△ADF是等邊三角形,

AD=AF,DAF=60°,

∴∠BAC+CAD=DAF+CAD,

即∠BAF=CAF,

BADCAF中,

,

∴△BAD≌△CAF,

BD=CF.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一兒童服裝商店在銷(xiāo)售中發(fā)現(xiàn):某品牌童裝平均每天可售出20件,每件盈利40元.為了迎接“六·一”兒童節(jié),商店決定采取適當(dāng)?shù)慕祪r(jià)措施,擴(kuò)大銷(xiāo)售量,增加盈利,盡快減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每件童裝降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷(xiāo)售這種童裝上盈利1200元,那么每件童裝應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:

8+(﹣10+(﹣2)﹣(﹣5

235|3|

③(﹣1+1.25+(﹣8.5+10

④(×(﹣12

⑤(﹣199×5(用簡(jiǎn)便方法計(jì)算)

10×(﹣)﹣+(﹣3×(﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P為拋物線y=x2上一動(dòng)點(diǎn).

(1)若拋物線y=x2是由拋物線y=x+2)2﹣1通過(guò)圖象平移得到的,請(qǐng)寫(xiě)出平移的過(guò)程;

(2)若直線l經(jīng)過(guò)y軸上一點(diǎn)N,且平行于x軸,點(diǎn)N的坐標(biāo)為(0,﹣1),過(guò)點(diǎn)PPMlM

①問(wèn)題探究:如圖一,在對(duì)稱軸上是否存在一定點(diǎn)F,使得PM=PF恒成立?若存在,求出點(diǎn)F的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.

②問(wèn)題解決:如圖二,若點(diǎn)Q的坐標(biāo)為(1.5),求QP+PF的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,先填空后證明.

已知: ∠1+∠2=180° 求證:a∥b.

證明:∵ ∠1=∠3_____,∠1+∠2=180°_____,

∴ ∠3+∠2=180°______.

∴ a∥b_____.

請(qǐng)你再寫(xiě)出一種證明方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在圖1、圖2的網(wǎng)格中,每個(gè)小四邊形均為正方形,且邊長(zhǎng)是1.如果三角形的頂點(diǎn)均在網(wǎng)格交點(diǎn)處,我們稱這樣的三角形為格點(diǎn)三角形.下面的三角形均為格點(diǎn)三角形.

1)如圖1,試判斷ABC的形狀,并說(shuō)明理由;

2)在圖2的網(wǎng)格中,請(qǐng)你以DE為底邊,畫(huà)一個(gè)面積為7.5的等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊ABC的邊長(zhǎng)為4,D是線段BA延長(zhǎng)線上的一點(diǎn),以線段CD為邊向CD的左側(cè)作等邊CDE,連接AE

1ABC的面積SABC   ;

2)求證:ACE≌△BCD

3)若四邊形ABCE的面積為10,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】珍重生命,注意安全!”同學(xué)們?cè)谏舷聦W(xué)途中一定要注意騎車(chē)安全.小明騎單車(chē)上學(xué),當(dāng)他騎了一段時(shí)間,想起要買(mǎi)某本書(shū),于是又折回到剛經(jīng)過(guò)的新華書(shū)店,買(mǎi)到書(shū)后繼續(xù)去學(xué)校,以下是他本次所用的時(shí)間與路程的關(guān)系示意圖.根據(jù)圖中提供的信息回答下列問(wèn)題:

(1)小明家到學(xué)校的路程是 米,小明在書(shū)店停留了 分鐘

(2)本次上學(xué)途中,小明一共行駛了 米,一共用了 分鐘.

(3)我們認(rèn)為騎單車(chē)的速度超過(guò)300米分鐘就超越了安全限度.問(wèn):在整個(gè)上學(xué)的途中哪個(gè)時(shí)間段小明騎車(chē)速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正六邊形的邊長(zhǎng)為,點(diǎn)點(diǎn)出發(fā)沿運(yùn)動(dòng)至點(diǎn),點(diǎn)是點(diǎn)關(guān)于直線對(duì)稱的點(diǎn).

)點(diǎn)從點(diǎn)運(yùn)動(dòng)至過(guò)程中,下列說(shuō)法正確的有__________.(填序號(hào))

①當(dāng)點(diǎn)運(yùn)動(dòng)到時(shí),線段長(zhǎng)為

②點(diǎn)沿直線從運(yùn)動(dòng)到

③點(diǎn)沿圓弧從運(yùn)動(dòng)到

)點(diǎn)從點(diǎn)運(yùn)動(dòng)至的過(guò)程中,點(diǎn)的距離的最小值是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案