【題目】如圖,拋物線的對稱軸為,與軸的一個交點在和之間,其部分圖象如圖所示,則下列結(jié)論:
;;點、、是該拋物線上的點,則;;(為任意實數(shù)).
其中正確結(jié)論的個數(shù)是( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】
逐一分析5條結(jié)論是否正確:(1)由拋物線與x軸有兩個不相同的交點結(jié)合根的判別式即可得出該結(jié)論正確;(2)根據(jù)拋物線的對稱軸為x=1,即可得出b=2a,即(2)正確;(3)根據(jù)拋物線的對稱性找出點(,y3)在拋物線上,再結(jié)合拋物線對稱軸左邊的單調(diào)性即可得出(3)錯誤;(4)由x=3時,y<0,即可得出3a+c<0,結(jié)合b=2a即可得出(4)正確;(5)由方程at2+bt+a=0中△=b24aa=0結(jié)合a<0,即可得出拋物線y=at2+bt+a中y≤0,由此即可得出(5)正確.綜上即可得出結(jié)論.
(1)由函數(shù)圖象可知,拋物線與x軸有兩個不同的交點,
∴關(guān)于x的方程ax2+bx+c=0有兩個不相等的實數(shù)根,
∴△=b24ac>0,
∴(1)正確;
(2)∵拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,
∴=1,
∴2a=b,
∴(2)正確;
(3)∵拋物線的對稱軸為x=1,點(,y3)在拋物線上,
∴(,y3).
∵<<,且拋物線對稱軸左邊圖象y值隨x的增大而增大,
∴y1<y3<y2.
∴(3)錯誤;
(4)∵當x=3時,y=9a3b+c<0,且b=2a,
∴9a3×2a+c=3a+c<0,
∴6a+2c=3b+2c<0,
∴(4)正確;
(5)∵b=2a,
∴方程at2+bt+a=0中△=b24aa=0,
∴拋物線y=at2+bt+a與x軸只有一個交點,
∵圖中拋物線開口向下,
∴a<0,
∴y=at2+bt+a≤0,
即at2+bt≤a=ab.
∴(5)正確.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】為了提高產(chǎn)品的附加值,某公司計劃將研發(fā)生產(chǎn)的1200件新產(chǎn)品進行精加工后再投放市場.現(xiàn)有甲、乙兩個工廠都具備加工能力,公司派出相關(guān)人員分別到這兩個工廠了解情況,獲得如下信息:
信息一:甲工廠單獨加工完成這批產(chǎn)品比乙工廠單獨加工完成這批產(chǎn)品多用10天;
信息二:乙工廠每天加工的數(shù)量是甲工廠每天加工數(shù)量的1.5倍.
根據(jù)以上信息,求甲、乙兩個工廠每天分別能加工多少件新產(chǎn)品.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中,、分別是邊與的中點,,下面四個結(jié)論:①;②;③的面積與的面積之比為;④的周長與的周長之比為;其中正確的有________.(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】北京時間2015年7月31日,國際奧委會主席巴赫宣布:中國北京獲得2022年第24屆冬季奧林匹克運動會舉辦權(quán).北京也創(chuàng)造歷史,成為第一個既舉辦過夏奧會又舉辦冬奧會的城市,張家口也成為本屆冬奧會的協(xié)辦城市.近期,新建北京至張家口鐵路可行性研究報告已經(jīng)獲得國家發(fā)改委批復(fù),同意新建北京至張家口鐵路,鐵路全長約180千米.按照設(shè)計,京張高鐵列車的平均行駛速度是普通快車的1.5倍,用時比普通快車用時少了20分鐘,求高鐵列車的平均行駛速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點C為線段AB上一點,分別以AC、BC為邊在線段AB同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE=α,直線AE與BD交于點F.
(1)如圖1所示,
①求證AE= BD
②求∠AFB (用含α的代數(shù)式表示)
(2)將圖1中的△ACD繞點C順時針旋轉(zhuǎn)某個角度(交點F至少在BD、AE中的一條線段上),得到如圖2所示的圖形,若∠AFB= 150°,請直接寫出此時對應(yīng)的α的大小(不用證明)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為△ABC三邊的長.
(1)如果x=-1是方程的根,試判斷△ABC的形狀,并說明理由;
(2)如果方程有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC為等邊三角形,點D為直線BC上的一動點(點D不與B、C重合),以AD為邊作等邊△ADE(頂點A、D、E按逆時針方向排列),連接CE.
(1)如圖1,當點D在邊BC上時,求證:①BD=CE,②AC=CE+CD;
(2)如圖2,當點D在邊BC的延長線上且其他條件不變時,結(jié)論AC=CE+CD是否成立?若不成立,請寫出AC、CE、CD之間存在的數(shù)量關(guān)系,并說明理由;
(3)如圖3,當點D在邊BC的反向延長線上且其他條件不變時,補全圖形,并直接寫出AC、CE、CD之間存在的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角坐標平面內(nèi),已點A(3,0)、B(-5,3),將點A向左平移6個單位到達C點,將點B向下平移6個單位到達D點.
(1)寫出C點、D點的坐標:C __________,D ____________ ;
(2)把這些點按A-B-C-D-A順次連接起來,這個圖形的面積是__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com