【題目】已知:如圖,⊙O的半徑OC垂直弦AB于點H,連接BC,過點A作弦AE∥BC,過點C作CD∥BA交EA延長線于點D,延長CO交AE于點F.
(1)求證:CD為⊙O的切線;
(2)若BC=5,AB=8,求OF的長.
【答案】(1)見解析;(2).
【解析】
試題(1)、根據(jù)平行線的性質進行判定;(2)、首先求出AH各BH的長度,根據(jù)平行線得出△HAF和△HBC全等,得出FH=CH=3,CF=6,然后設BO=x,則OH=x-3,根據(jù)Rt△BHO的勾股定理求出x的值,得出OF的長度.
試題解析:(1)、∵OC⊥AB,CD∥BA,∴CD⊥OC,∴CD為⊙O的切線,
(2)、OC⊥AB,AB=8, ∴AH=BH==4
在Rt△BCH中,∵BH=4,BC=5,∴CH=3, ∵AE∥BC,
∴∠HAF=∠HBC,又∠AHF=∠BHC,∴△HAF≌△HBC
∴FH=CH=3,CF=6
連接BO,設BO=x,則OH=x-3,
在Rt△BHO中,有
解得:x=,∴OF=CF-OC=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AC是矩形ABCD的對角線,AC的垂直平分線EF分別交BC、AD于點E和F,EF交AC于點O.
(1)求證:四邊形AECF是菱形;(2)若AB=6,AD=8,求四邊形AECF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EF=,求AF長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax+bx+c(a≠0)與x軸交于點A(-1,0),B(4,0)兩點,與y軸交于點C,且OC=3OA,點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.
(1)求拋物線的解析式;
(2)當點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應點為點Q,試問四邊形CDPQ是否能成為菱形?如果能,請求出此時點P的坐標,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“國際無煙日”來臨之際,小明就公眾對在餐廳吸煙的態(tài)度進行了調查,并將調查結果制作成如圖所示的統(tǒng)計圖,請你根據(jù)圖中信息回答:
(1)被調查者中,不吸煙者贊成在餐廳徹底禁煙的人數(shù)是 .
(2)被調查者中,希望在餐廳設立吸煙室的人數(shù)是 .
(3)求被調查者中贊成在餐廳徹底禁煙的頻率.
(4)眉山市現(xiàn)有人口約380萬,根據(jù)圖中信息估計眉山市現(xiàn)有人口中贊成在餐廳徹底禁煙的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長沙九龍倉國際金融中心主樓高達,是目前湖南省第一高樓,和它處于同一水平面上的第二高樓高,為了測量高樓上發(fā)射塔的高度,在樓底端點測得的仰角為α,,在頂端E測得A的仰角為,求發(fā)射塔的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩位同學在足球場上游戲,兩人的運動路線如圖1所示,其中AC=DB,小王從點A出發(fā)沿線段AB運動到點B,小林從點C出發(fā),以相同的速度沿⊙O逆時針運動一周回到點C,兩人同時開始運動,直到都停止運動時游戲結束,其間他們與點C的距離y與時間x(單位:秒)的對應關系如圖2所示,結合圖象分析,下列說法正確的是( )
A. 小王的運動路程比小林的長
B. 兩人分別在秒和秒的時刻相遇
C. 當小王運動到點D的時候,小林已經(jīng)過了點D
D. 在秒時,兩人的距離正好等于的半徑
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com