【題目】在平面直角坐標系中,已知點,試分別根據下列條件,求出點的坐標。
(1)點在軸上;
(2)點橫坐標比縱坐標大3;
(3)點在過點,且與軸平行的直線上。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,如果BD,CE分別是∠ABC,∠ACB的平分線且他們相交于點P,設∠A=n°.
(1)求∠BPC的度數(shù)(用含n的代數(shù)式表示),寫出推理過程.
(2)當∠BPC=125°時,∠A= .
(3)當n=60°時,EB=7,BC=12,DC的長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點E在線段AC上,D在AB的延長線上,連接DE交BC于F,過E作EG⊥BC于G.
(1)下列兩個關系式:①DB=EC,②DF=EF,請你選擇一個做為條件,另一個做為結論構成一個正確的命題,并給予證明.
你選擇的條件是 ,結論是 .(只需填序號)
(2)在(1)的條件下,求證:FG=BC/2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,對稱軸為直線x=1的拋物線經過A(﹣1,0)、C(0,3)兩點,與x軸的另一個交點為B,點D在y軸上,且OB=3OD
(1)求該拋物線的表達式;
(2)設該拋物線上的一個動點P的橫坐標為t
①當0<t<3時,求四邊形CDBP的面積S與t的函數(shù)關系式,并求出S的最大值;
②點Q在直線BC上,若以CD為邊,點C、D、Q、P為頂點的四邊形是平行四邊形,請求出所有符合條件的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題背景】
(1)如圖1的圖形我們把它稱為“8字形”,請說明;
【簡單應用】
(2)閱讀下面的內容,并解決后面的問題:如圖2, AP、CP分別平分∠BAD. ∠BCD,若∠ABC=36°,∠ADC=16°,求∠P的度數(shù);
解:∵AP、CP分別平分∠BAD. ∠BCD
∴∠1=∠2,∠3=∠4
由(1)的結論得:
①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D
∴∠P = (∠B+∠D)=26°.
【問題探究】如圖3,直線AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,請猜想的度數(shù),并說明理由.
【拓展延伸】
① 在圖4中,若設∠C=α,∠B=β,∠CAP=∠CAB,∠CDP=∠CDB,試問∠P與∠C、∠B之間的數(shù)量關系為:________________(用α、β表示∠P),
②在圖5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P與∠B、∠D的關系,直接寫出結論______________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD的一組對邊AD、BC的延長線交于點E.
(1)如圖①,若∠ABC=∠ADC=90°,求證:ED·EA=EC·EB;
(2)如圖②,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;
(3)如圖③,另一組對邊AB、DC的延長線相交于點F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接寫出AD的長(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市在2013年義務教育質量監(jiān)測過程中,為了解學生的家庭教育情況,就八年級學生平時主要和誰在一起生活進行了抽樣調查.下面是根據這次調查情況制作的不完整的頻數(shù)分布表和扇形統(tǒng)計圖.
頻數(shù)分布表
代碼 | 和誰一起生活 | 頻數(shù) | 頻率 |
A | 父母 | 4200 | 0.7 |
B | 爺爺奶奶 | 660 | a |
C | 外公外婆 | 600 | 0.1 |
D | 其它 | b | 0.09 |
合計 | 6000 | 1 |
請根據上述信息,回答下列問題:
(1)a= ,b= ;
(2)在扇形統(tǒng)計圖中,和外公外婆一起生活的學生所對應扇形圓心角的度數(shù)是 ;
(3)若該市八年級學生共有3萬人,估計不與父母一起生活的學生有 人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠A=∠C=90°,BE,DF分別是∠ABC,∠ADC的平分線.
(1)∠1與∠2有什么關系,為什么?
(2)BE與DF有什么關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A,B,C的坐標分別為A(a,3),B(b,6),C(m+6,1),且a,b滿足
(1)請用含m的式子表示A,B兩點的坐標;
(2)如圖,點A在第二象限,點B在第一象限,連接A、B、C、O四點;
①若點B到y軸的距離不小于點A到y軸距離的2倍,試求m的取值范圍;
②若三角形AOC的面積等于三角形ABC面積的,求實數(shù)m的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com