如圖, AB和CD是夾在兩平行線之間的平行線段,

AB  CD(填“>”或“<”或“=)

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(1998•四川)如圖,AB和CD是⊙O的兩條直徑,弦DE∥AB,弧DE為50°的弧,那么∠BOC為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

  如圖,ABCD,BE平分∠ABC,CF平分∠BCD,你發(fā)現(xiàn)BECF有怎樣的位置關(guān)系?請說出你的理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:蕭紅中學(xué)(四年制) 新概念數(shù)學(xué) 八年級上(人教版) 題型:059

  如圖所示,已知等邊△ABC和點P,設(shè)P到△ABC三邊AB,AC,BC的距離分別為h1,h2,h3,△ABC的高為h.

  若點P在一邊BC上,此時h3=0,則可得結(jié)論:h1+h2+h3=h(如圖(1)).

(1)

請直接應(yīng)用上述信息解決下列問題:

當點P在△ABC內(nèi)部(如圖(2)),點P在△ABC外部(如圖(3))這兩種情況時上述結(jié)論是否還成立?若成立,請給予證明;若不成立,h1,h2,h3與h之間又有怎樣關(guān)系?請寫出你的猜想,不用證明.

(2)

若不應(yīng)用上述信息,請?zhí)骄科渌姆椒▉碜C明你猜想的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點一測叢書 八年級數(shù)學(xué) 下。ńK版課標本) 江蘇版 題型:013

反比例函數(shù)中系數(shù)k的幾何意義

  反比例函數(shù)y=(k≠0)任取一點M(a,b),過M作MA⊥x軸,MB⊥y軸,所得矩形OAMB的面積為S=MA·MB=|b|·|a|=|ab|.又因為b=,故ab=k,所以S=|k|(如圖(1)).

  這就是說,過雙曲線上任意一點作x軸、y軸的垂線,所得的矩形面積為|k|.這就是k的幾何意義,會給解題帶來方便.現(xiàn)舉例如下:

  例1:如(2)圖,已知點P1(x1,y1)和P2(x2,y2)都在反比例函數(shù)y=(k<0)的圖像上,試比較矩形P1AOB與矩形P2COD的面積大。

  解答:=|k|

  =|k|

  故

  例2:如圖(3),在y=(x>0)的圖像上有三點A、B、C,經(jīng)過三點分別向x軸引垂線,交x軸于A1、B1、C1三點,連結(jié)OA、OB、OC,記△OAA1、△OBB1、△OCC1的面積分別為S1、S2、S3,則有(  )

  A.S1=S2=S3

  B.S1<S2<S3

  C.S3<S1<S2

  D.S1>S2>S3

  解答:∵|k|=

  |k|=

  |k|=

  S1=S2=S3,故選A.

  例3:一個反比例函數(shù)在第三象限的圖像如圖(4)所示,若A是圖像任意一點,AM⊥x軸,垂足為M,O是原點,如果△AOM的面積是3,那么這個反比例函數(shù)的解析式是________.

  解答:∵S△AOM|k|

  又S△AOM=3,

  ∴|k|=3,|k|=6

  ∴k=±6

  又∵曲線在第三象限

  ∴k>0∴k=6

  ∴所以反比例函數(shù)的解析式為y=

  根據(jù)是述意義,請你解答下題:

  如圖(5),過反比例函數(shù)y=(x>0)的圖像上任意兩點A、B分別作軸和垂線,垂足分別為C、D,連結(jié)OA、OB,設(shè)AC與OB的交點為E,△AOE與梯形ECDB的面積分別為S1、S2,比較它們的大小,可得

[  ]

A.S1>S2

B.S1=S2

C.S1<S2

D.大小關(guān)系不能確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探索勾股定理時,我們發(fā)現(xiàn)“用不同的方式表示同一圖形的面積”可以解決線段和(或差)的有關(guān)問題,這種方法稱為面積法。請你運用面積法求解下列問題:在等腰三角形ABC中,AB=AC,BD為腰AC上的高。

(1)若BD=h,M時直線BC上的任意一點,M到AB、AC的距離分別為。

①   若M在線段BC上,請你結(jié)合圖形①證明:= h;          

②   當點M在BC的延長線上時,,h之間的關(guān)系為      (請直接寫出結(jié)論,不必證明)                         

(2)如圖②,在平面直角坐標系中有兩條直線:y = x + 6 ; :y = -3x+6 若上的一點M到的距離是3,請你利用以上結(jié)論求解點M的坐標。

                                 

                                          圖②


查看答案和解析>>

同步練習(xí)冊答案