【題目】如圖,BE是圓O的直徑,AEB的延長(zhǎng)線上,AP為圓O的切線,P為切點(diǎn),弦PD垂直于BE于點(diǎn)C.

(1)求證:∠AOD=∠APC;

(2)若OC:CB=1:2,AB=6,求圓O的半徑及tan∠APB.

【答案】(1)見解析;(2)

【解析】試題分析:(1)連接OP,可結(jié)合已知的等角和等腰三角形、直角三角形的性質(zhì)進(jìn)行證明;

(2)根據(jù)OC、BC的比例關(guān)系,可用未知數(shù)表示出OC、BC的表達(dá)式,進(jìn)而可得OP、OB的表達(dá)式;在Rt△AOP中,PC⊥OA,根據(jù)射影定理得:PC2=PCAC,PC2的表達(dá)式可在Rt△OPC中由勾股定理求得,由此求得未知數(shù)的知,從而確定PC、CE的長(zhǎng),也就能求出⊙O的半徑和∠APB的正切值.

試題解析:(1)連接OP,

∵OP=OD,∴∠OPD=∠D,

∵PD⊥BE,

∴∠OCD=90°,

在Rt△OCD中,∠D+∠AOD=90°,

又∵AP是⊙O的切線,

∴AP⊥OP,

則∠OPD+∠APC=90°,

∴∠AOD=∠APC;

(2)連接PE,

∴∠BPE=90°(直徑所對(duì)的圓周角是直角),

AP是⊙O的切線,

∴∠APB=∠OPE=∠PEA,

∵OC:CB=1:2,

設(shè)OC=x,則BC=2x,OP=OB=3x,

在Rt△OPC中,OP=3x,OC=x,由勾股定理得

PC2=OP2﹣OC2=8x2,

在Rt△OPC中,PC⊥OA,由射影定理得

PC2=OCAC,即8x2=x(2x+6),6x2=6x,

解得x=0(舍去),x=1,

OP=OB=3,PC=2,CE=OC+OE=3+1=4,

tanAPB=tanPEC=,

∴⊙O的半徑為3,∠APB的正切值是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠C=70°,⊙OCA、CB分別于點(diǎn)A和點(diǎn)B,則弦AB所對(duì)的圓周角的度數(shù)為( 。

A. 110° B. 55° C. 55°或 110° D. 55 125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力.增強(qiáng)保護(hù)漢字的意識(shí),我區(qū)舉辦了漢字聽寫大賽,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)聽寫50個(gè)漢字,若每正確聽寫出一個(gè)漢字得1分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績(jī)x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

6

3

35≤x<40

14

4

40≤x<45

a

5

45≤x<50

10

請(qǐng)結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請(qǐng)把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若測(cè)試成績(jī)不低于40分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?

(4)510名同學(xué)中,有4名男生,現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對(duì)抗練習(xí),且4名男同學(xué)每組分兩人,試用列表法或畫樹狀圖的方法求小宇和小強(qiáng)兩名男同學(xué)能分在一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,ABC中,∠B=90°,AB=6cm,BC=8cm.

(1)點(diǎn) P從點(diǎn)A開始沿AB邊向B1cm/s的速度移動(dòng),點(diǎn)QB點(diǎn)開始沿BC邊向點(diǎn)C2cm/s的速度移動(dòng).如果P、Q分別從A,B同時(shí)出發(fā),線段PQ能否將ABC分成面積相等的兩部分?若能,求出運(yùn)動(dòng)時(shí)間;若不能說明理由.

(2)P點(diǎn)沿射線AB方向從A點(diǎn)出發(fā)以1cm/s的速度移動(dòng),點(diǎn) Q沿射線 CB方向從C點(diǎn)出發(fā)以2cm/s的速度移動(dòng),P、Q同時(shí)出發(fā),問幾秒后,PBQ的面積為1cm2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 在平面直角坐標(biāo)系xOy中,點(diǎn)A1,A2,A3,···和B1,B2,B3,···分別在直線和x軸上.OA1B1,B1A2B2,B2A3B3,…都是等腰直角三角形,如果A1(1,1),A2,那么點(diǎn)的縱坐標(biāo)是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=DB,∠1=∠2,請(qǐng)問添加下面哪個(gè)條件不能判斷△ABC≌△DBE的是( 。

A. BC=BE B. ∠A=∠D C. ∠ACB=∠DEB D. AC=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩個(gè)可以自由轉(zhuǎn)動(dòng)的均勻轉(zhuǎn)盤A,B,都被分成3等份,每份內(nèi)均標(biāo)有數(shù)字,小明和小亮用這兩個(gè)轉(zhuǎn)盤做游戲,游戲規(guī)則如下:分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤AB,兩個(gè)轉(zhuǎn)盤停止后,將兩個(gè)指針?biāo)阜輧?nèi)的數(shù)字相加(如果指針恰好停在等分線上,那么重轉(zhuǎn)一次,直到指針指向某一份為止),若和為偶數(shù),則小明獲勝;如果和為奇數(shù),那么小亮獲勝.

(1)請(qǐng)畫出樹狀圖,求小明獲勝的概率P(A)和小亮獲勝的概率P(B).

(2)通過(1)的計(jì)算結(jié)果說明該游戲的公平性.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“校園手機(jī)”現(xiàn)象越來越受到社會(huì)的關(guān)注﹒春節(jié)期間,小明隨機(jī)調(diào)查了城區(qū)若干名同學(xué)和家長(zhǎng)對(duì)中學(xué)生帶手機(jī)現(xiàn)象的看法.統(tǒng)計(jì)整理并制作了如下的統(tǒng)計(jì)圖:

(1)這次的調(diào)查對(duì)象中,家長(zhǎng)有多少人;

(2)圖②中表示家長(zhǎng)“贊成”的圓心角的度數(shù)為多少度;

(3)開學(xué)后,甲、乙兩所學(xué)校對(duì)各自學(xué)校所有學(xué)生帶手機(jī)情況進(jìn)行了統(tǒng)計(jì),發(fā)現(xiàn)兩校共有2384名學(xué)生帶手機(jī),且乙學(xué)校帶手機(jī)的學(xué)生數(shù)是甲學(xué)校帶手機(jī)學(xué)生數(shù)的,求甲、乙兩校中帶手機(jī)的學(xué)生數(shù)各有多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在△ABC中,∠ACB=90°,以AB為直徑作⊙O;過點(diǎn)C作直線CDAB的延長(zhǎng)線于點(diǎn)D,且BD=OB,CD=CA

1)求證:CD是⊙O的切線.

2)如圖(2),過點(diǎn)CCEAB于點(diǎn)E,若⊙O的半徑為8,∠A=30°,求線段BE

查看答案和解析>>

同步練習(xí)冊(cè)答案