如圖,⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為( )

A.(-,
B.(-,1)
C.(-,
D.(-1,
【答案】分析:先利用切線AC求出OC=2=OA,從而∠BOD=∠AOC=60°,則B點(diǎn)的坐標(biāo)即可求出.
解答:解:過點(diǎn)A作AC⊥x軸于點(diǎn)C,過點(diǎn)B作BD⊥x軸于點(diǎn)D,
∵⊙O的半徑為2,點(diǎn)A的坐標(biāo)為(2,2),即OC=2,
∴AC是圓的切線.
∵點(diǎn)A的坐標(biāo)為(2,2),
∴OA==4,
∵OA=4,OC=2,
∴sin∠OAC=
∴∠OAC=30°,
∴∠AOC=60°,∠AOB=∠AOC=60°,
∴∠BOD=180°-∠AOB-∠AOC=60°,
∴OD=1,BD=,即B點(diǎn)的坐標(biāo)為(-1,).故選D.
點(diǎn)評:本題綜合考查了圓的切線長定理和坐標(biāo)的確定,是綜合性較強(qiáng)的綜合題,關(guān)鍵是根據(jù)切線長定理求出相關(guān)的線段,并求出相對應(yīng)的角度,利用直角三角形的性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個,設(shè)L為經(jīng)過⊙O上任意兩個格點(diǎn)的直線,則直線L同時經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊答案