【題目】已知直線l1:y=x+n-2與直線l2:y=mx+n相交于點(diǎn)P(1,2).

(1)m,n的值;

(2)請(qǐng)結(jié)合圖象直接寫(xiě)出不等式mx+n>x+n-2的解集.

【答案】(1) m=-1;(2) x<1. 

【解析】試題分析:

1)由題意把點(diǎn)P1,2)代入兩函數(shù)的解析式可得關(guān)于mn的方程組,解方程組即可求得m、n的值;

2)由圖可知,不等式mx+n>x+n-2的解集即是函數(shù)圖象中,直線l2在直線l1的上方部分圖象所對(duì)應(yīng)的自變量的取值范圍結(jié)合點(diǎn)P的坐標(biāo)即可求得所求解集;

試題解析

1直線l1:y=x+n-2與直線l2:y=mx+n相交于點(diǎn)P(1,2)

,解得: ,

∴m的值為-1;

2)由圖可知,不等式mx+n>x+n-2的解集即是函數(shù)圖象中,直線l2在直線l1的上方部分圖象所對(duì)應(yīng)的自變量的取值范圍,

點(diǎn)P的坐標(biāo)為(1,-2),

不等式mx+n>x+n-2的解集為 .

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,且點(diǎn)B與點(diǎn)C的坐標(biāo)分別為B(3,0).C(0,3),點(diǎn)M是拋物線的頂點(diǎn).

(1)求二次函數(shù)的關(guān)系式;
(2)點(diǎn)P為線段MB上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PD⊥x軸于點(diǎn)D.若OD=m,△PCD的面積為S,試判斷S有最大值或最小值?并說(shuō)明理由;
(3)在MB上是否存在點(diǎn)P,使△PCD為直角三角形?如果存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是△ABC邊上的高,BE平分∠△ABC交AD于點(diǎn)E.若∠C=60°,∠BED=70°. 求∠ABC和∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:①若a<1,則(a﹣1) =﹣ ;②平行四邊形既是中心對(duì)稱(chēng)圖形又是軸對(duì)稱(chēng)圖形;③ 的算術(shù)平方根是3;④如果方程ax2+2x+1=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a<1.其中正確的命題個(gè)數(shù)是(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩個(gè)不透明的布袋里,都裝有3個(gè)大小、材質(zhì)完全相同的小球,其中甲袋中的小球上分別標(biāo)有數(shù)字0,1,2;乙袋中的小球上分別標(biāo)有數(shù)字﹣1,﹣2,0.現(xiàn)從甲袋中任意摸出一個(gè)小球,記其標(biāo)有的數(shù)字為x,再?gòu)囊掖腥我饷鲆粋(gè)小球,記其標(biāo)有的數(shù)字為y,以此確定點(diǎn)M的坐標(biāo)(x,y).
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,寫(xiě)出點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=﹣ 的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三名射運(yùn)動(dòng)員在某場(chǎng)測(cè)試中各射擊10次,3人的測(cè)試成績(jī)?nèi)缦卤?/span>

則甲、乙、丙3名運(yùn)動(dòng)員測(cè)試成績(jī)最穩(wěn)定的是 ( )

A. B. C. D.3人成績(jī)穩(wěn)定情況相同

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD,E是BA延長(zhǎng)線上一點(diǎn),AB=AE,連接CE交AD于點(diǎn)F,若CF平分∠BCD,AB=3,則BC的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在平面直角坐標(biāo)系中,三角形ABC的位置如圖所示.

(1)請(qǐng)寫(xiě)出A、B、C三點(diǎn)的坐標(biāo);

(2)你能想辦法求出三角形ABC的面積嗎?

(3)將三角形ABC向右平移6個(gè)單位,再向上平移2個(gè)單位,請(qǐng)?jiān)趫D中作出平移后的三角形A′ B′ C′,并寫(xiě)出三角形A′ B′ C各點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案