【題目】如圖1,中,,分別是上的點(diǎn),且滿足.
(1)求證:
(2)在圖1中,是否存在與AP相等的線段?若存在,請(qǐng)找出來,并加以證明;若不存在,說明理由.
(3)若將“為上的點(diǎn)”改為:“為DB延長線上的點(diǎn)”其他條件不變(如圖2)若,求線段之間的數(shù)量關(guān)系(用含的式子表示)
【答案】(1)證明詳見解析;(2)存在,,理由見解析;(3)
【解析】
(1)由已知可得四邊形ABCD是菱形,結(jié)合菱形的性質(zhì),由可得,即可求得;
(2)過點(diǎn)A作,交BD于點(diǎn)M,證得,得,即可得AP=AQ;
(3)過點(diǎn)A作,交BD的延長線于點(diǎn)M,作,可證,得,即,易證,即可得到.
(1)證明:∵四邊形ABCD是平行四邊形,,
∴四邊形ABCD是菱形,
,
,
,
,
,
,
,
,
.
(2)存在,.
如圖,過點(diǎn)A作,交BD于點(diǎn)M,
∴∠APM=∠AMP,
由(1)知,,
∴∠APM=∠AQC,
∴∠AMP=∠AQC,
又∵四邊形ABCD為菱形,
∴AB=AC,∠B=∠C,
∴,
∴,
即AP=AQ.
(3)過點(diǎn)A作,交BD的延長線于點(diǎn)M,作,
∵四邊形ABCD是平行四邊形,
∴AC∥BD,∠C+∠BDC=180°,∠ACD=∠ABM,
∵,
∴∠PAQ+∠BDC=180°,
∴∠APB+∠AQD=180°,
∴∠APB=∠AQC,
又∵AP=AM,
∴∠APB=∠AMP,
∴∠AQC=∠AMP,
∴,
∴,
,
在等腰△APM中,AH⊥PM,
∴,
,
即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB 是⊙O的直徑,∠DAB的角平分線AC交⊙O于點(diǎn)C,過點(diǎn)C作CD⊥AD于D,AB的延長線與DC的延長線相交于點(diǎn)P,∠ACB的角平分線CE交AB于點(diǎn)F、交⊙O于E.
(1)求證:PC與⊙O相切;
(2)求證:PC=PF;
(3)若AC=8,tan∠ABC=,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,直線與x軸交于點(diǎn)C.
(1)求點(diǎn)B的坐標(biāo);
(2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記線段圍成的區(qū)域(不含邊界)為G.
①當(dāng)時(shí),結(jié)合函數(shù)圖象,求區(qū)域G內(nèi)整點(diǎn)的個(gè)數(shù);
②若區(qū)域G內(nèi)恰有2個(gè)整點(diǎn),直接寫出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(n,2),B(1,4)是一次函數(shù)y=kx+b和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
(3)直接寫出kx+b>時(shí),的取值范圍為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系第一象限內(nèi),直線與直線的內(nèi)部作等腰,使,邊軸,軸,在直線上,點(diǎn)C在直線上,CB的延長線交直線于點(diǎn),作等腰,使軸,軸,點(diǎn)在直線上,按此規(guī)律,則等腰的腰長為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.
求證:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】[閱讀理解]
當(dāng)且時(shí),因?yàn)?/span>所以從而(當(dāng)且僅當(dāng)時(shí)取等號(hào)).由此可知,在且的條件下,當(dāng)時(shí),代數(shù)式有最小值為.
[實(shí)踐應(yīng)用]
(1)在的條件下,當(dāng) 時(shí),有最小值,且最小值為 ;
(2)設(shè),求的最小值,并指出當(dāng)取得該最小值時(shí)對(duì)應(yīng)的的值;
[拓展延伸]
在平面直角坐標(biāo)系中,點(diǎn)點(diǎn).點(diǎn)是函數(shù)在第一象限內(nèi)圖象上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作垂直于軸,垂直于軸,垂足分別為點(diǎn).設(shè)點(diǎn)的橫坐標(biāo)為,四邊形的面積為.
(3)求和之間的函數(shù)關(guān)系式:
(4)試判斷當(dāng)的值最小時(shí),四邊形是何特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某人開車從家出發(fā)去植物園游玩,設(shè)汽車行駛的路程為S(千米),所用時(shí)間為t(分),S與t之間的函數(shù)關(guān)系如圖所示.若他早上8點(diǎn)從家出發(fā),汽車在途中停車加油一次,則下列描述中,不正確的是( )
A.汽車行駛到一半路程時(shí),停車加油用時(shí)10分鐘
B.汽車一共行駛了60千米的路程,上午9點(diǎn)5分到達(dá)植物園
C.加油后汽車行駛的速度為60千米/時(shí)
D.加油后汽車行駛的速度比加油前汽車行駛的速度快
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某教研機(jī)構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機(jī)抽取了某校50名初中生進(jìn)行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問題:
類別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若某校共有初中生2000名,請(qǐng)估計(jì)該校“重視課外閱讀名著”的初中生人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com