【題目】中,,直線過(guò)點(diǎn).
(1)當(dāng)時(shí),如圖1,分別過(guò)點(diǎn)和作直線于點(diǎn)直線于點(diǎn)與是否全等,并說(shuō)明理由;
(2)當(dāng)時(shí),如圖2,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱,連接點(diǎn)在上,點(diǎn)是上一點(diǎn),分別過(guò)點(diǎn)作直線于點(diǎn)直線于點(diǎn),點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為點(diǎn)從點(diǎn)出發(fā),以每秒的速度沿路徑運(yùn)動(dòng),終點(diǎn)為,點(diǎn)同時(shí)開(kāi)始運(yùn)動(dòng),各自達(dá)到相應(yīng)的終點(diǎn)時(shí)停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒.
①當(dāng)為等腰直角三角形時(shí),求的值;
②當(dāng)與全等時(shí),求的值.
【答案】(1)與全等,理由見(jiàn)解析;(2)①秒或秒;②秒或秒或秒
【解析】
(1)根據(jù)垂直的定義得到∠DAC=∠ECB,利用AAS定理證明△ACD≌△CBE;
(2)①分點(diǎn)F沿C→B路徑運(yùn)動(dòng)和點(diǎn)F沿B→C路徑運(yùn)動(dòng)兩種情況,根據(jù)等腰三角形的定義列出算式,計(jì)算即可;
②分點(diǎn)F沿F→C路徑運(yùn)動(dòng),點(diǎn)F沿C→B路徑運(yùn)動(dòng),點(diǎn)F沿B→C路徑運(yùn)動(dòng),點(diǎn)F沿C→F路徑運(yùn)動(dòng)四種情況,根據(jù)全等三角形的判定定理列式計(jì)算.
(1)與全等.
理由如下:直線,
,
,
,
,
在和中,
,
;
(2)①由題意得,,,
則,
由折疊的性質(zhì)可知,,
,
點(diǎn)在上時(shí),為等腰直角三角形,
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),由題意得,,
解得,,
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),由題意得,,
解得,,
綜上所述,當(dāng)秒或秒時(shí),為等腰直角三角形;
②由折疊的性質(zhì)可知,,
,,
,
當(dāng)時(shí),與全等,
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),,
解得,(不合題意),
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),,
解得,,
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),由題意得,,
解得,,
當(dāng)點(diǎn)沿路徑運(yùn)動(dòng)時(shí),由題意得,,
解得,,
綜上所述,當(dāng)秒或秒或秒時(shí),與全等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四川省雅安市蘆山縣(北緯30.3度,東經(jīng)103.0度)2013年4月20日8點(diǎn)02分發(fā)生7.0級(jí)地震,震源深度13千米.截至4月25日18時(shí),地震遇難人數(shù)升至196人,失蹤21人,13484人受傷,累計(jì)造成231余萬(wàn)人受災(zāi).一方有難,八方支援”.雅安地震牽動(dòng)著全國(guó)人民的心,我市某醫(yī)院準(zhǔn)備從甲、乙、丙三位醫(yī)生和A、B兩名護(hù)士中選取一位醫(yī)生和一名護(hù)士支援雅安.
(1)若隨機(jī)選一位醫(yī)生和一名護(hù)士,用樹(shù)狀圖(或列表法)表示所有可能出現(xiàn)的結(jié)果;
(2)求恰好選中醫(yī)生甲和護(hù)士A的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:OE是CD的垂直平分線.
(2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某體育用品商店一共購(gòu)進(jìn)20個(gè)籃球和排球,進(jìn)價(jià)和售價(jià)如下表所示,全部銷(xiāo)售完后共獲得利潤(rùn)260元;
籃球 | 排球 | |
進(jìn)價(jià)(元/個(gè)) | 80 | 50 |
售價(jià)(元/個(gè)) | 95 | 60 |
(1)列方程組求解:商店購(gòu)進(jìn)籃球和排球各多少個(gè)?
(2)銷(xiāo)售6個(gè)排球的利潤(rùn)與銷(xiāo)售幾個(gè)籃球的利潤(rùn)相等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售2018年俄羅斯世界杯吉祥物,平均每天可售出20套,每件盈利40元.為了迎接世界杯,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)、減少庫(kù)存.經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn):如果每套降價(jià)4元,那么平均每天就可多售出8套,要想平均每天在銷(xiāo)售吉祥物上盈利1200元,那么每套應(yīng)降價(jià)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6cm,AD=8cm,折疊該紙片,使得AB邊落在對(duì)角線AC上,點(diǎn)B落在點(diǎn)F處,折痕為AE,則EF=_____cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直徑坐標(biāo)系中,反比例函數(shù)y=(x>0)的圖象上有一點(diǎn)A(m,4),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,將點(diǎn)B向右平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,過(guò)點(diǎn)C作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)D,CD=.
(1)求點(diǎn)D的橫坐標(biāo)(用含m的式子表示);
(2)求反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB≠BC,連接AC,AE是∠BAD的平分線,交邊DC的延長(zhǎng)線于點(diǎn)F.
(1)證明:CE=CF;
(2)如圖(2),連接BF,若∠ABC=60°,BC=2AB,試判斷四邊形ABFC的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某店只銷(xiāo)售某種進(jìn)價(jià)為40元/kg的產(chǎn)品,已知該店按60元kg出售時(shí),每天可售出100kg,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低1元,則每天的銷(xiāo)售量可增加10kg.
(1)若單價(jià)降低2元,則每天的銷(xiāo)售量是_____千克,每天的利潤(rùn)為_____元;若單價(jià)降低x元,則每天的銷(xiāo)售量是_____千克,每天的利潤(rùn)為______元;(用含x的代數(shù)式表示)
(2)若該店銷(xiāo)售這種產(chǎn)品計(jì)劃每天獲利2240元,單價(jià)應(yīng)降價(jià)多少元?
(3)當(dāng)單價(jià)降低多少元時(shí),該店每天的利潤(rùn)最大,最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com