已知:如圖,?ABCD的對(duì)角線AC的垂直平分線與AC、BC、AD別相交于O、F、E三點(diǎn).求證:四邊形AFCE是菱形.

證明:∵四邊形ABCD是平行四邊形,
∴AD∥BC,即AE∥FC.
∴∠OAE=∠OCF.
∵∠AOE=∠COF=90°,AO=CO,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四邊形AFCE是平行四邊形.
∵EF⊥AC于O,
∴平行四邊形AFCE是菱形.
分析:由于知道了EF垂直平分AC,因此只要證出AFCE是平行四邊形即可得出AFCE是菱形的結(jié)論.可通過(guò)證三角形ABF和CED全等,來(lái)得出四邊形AECF的兩組對(duì)邊相等進(jìn)而得出四邊形AECF是平行四邊形,然后再根據(jù)上面所說(shuō)的步驟即可得出本題的結(jié)論.
點(diǎn)評(píng):菱形的判別方法是說(shuō)明一個(gè)四邊形為菱形的理論依據(jù),常用三種方法:①定義,②四邊相等,③對(duì)角線互相垂直平分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知,如圖,△ABC中,∠BAC=90°,AD⊥BC于點(diǎn)D,BE平分∠ABC,交AD于點(diǎn)M,AN平分∠DAC,交BC于點(diǎn)N.
求證:四邊形AMNE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,∠ABC、∠ACB 的平分線相交于點(diǎn)F,過(guò)F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC是等邊三角形,點(diǎn)D在AB上,點(diǎn)E在AC的延長(zhǎng)線上,且BD=CE,DE交BC于F,求證:BF=CF+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AB=AC=10,BC=16,點(diǎn)D在BC上,DA⊥CA于A.
求:BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,△ABC中,AD⊥BC,BD=DE,點(diǎn)E在AC的垂直平分線上.
(1)請(qǐng)問(wèn):AB、BD、DC有何數(shù)量關(guān)系?并說(shuō)明理由.
(2)如果∠B=60°,請(qǐng)問(wèn)BD和DC有何數(shù)量關(guān)系?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案