分析 (1)連接OC,欲證明PC是⊙O的切線,只要證明PC⊥OC即可.
(2)延長PO交圓于G點,由切割線定理求出PG即可解決問題.
解答 解:(1)如圖,連接OC,
∵PD⊥AB,
∴∠ADE=90°,
∵∠ECP=∠AED,
又∵∠EAD=∠ACO,
∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,
∴PC⊥OC,
∴PC是⊙O切線.
(2)解法一:
延長PO交圓于G點,
∵PF×PG=PC2,PC=3,PF=1,
∴PG=9,
∴FG=9-1=8,
∴AB=FG=8.
解法二:
設(shè)⊙O的半徑為x,則OC=x,OP=1+x
∵PC=3,且OC⊥PC
∴32+x2=(1+x)2
解得x=4
∴AB=2x=8
點評 本題考查切線的判定、切割線定理、等角的余角相等等知識,解題的關(guān)鍵是熟練運用這些知識解決問題,學(xué)會添加常用輔助線,屬于中考?碱}型.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | a2s2 | B. | 2a2s2 | C. | $\frac{{a}^{2}{s}^{2}}{2}$ | D. | $\frac{{a}^{2}{s}^{2}}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com