【題目】計算(1)(x+y2﹣(xy2

(2)

3)(2x-y+3)(2x+y-3

4)(2m+3n22m-3n2

【答案】14xy

2)-4;

3;

4.

【解析】

1)先運用完全平方式展開,然后合并同類項即可;

2)先計算同底數(shù)冪的除法,再計算加法運算即可;

3)先運用平方差公式計算,然后再運用完全平方式展開,最后去括號即可;

4)先運用平方差公式計算,然后再運用完全平方式展開即可.

解:(1)(x+y2﹣(xy2

=x2+2xy+y2x2+2xyy2

=4xy;

2

=1+-53-2

=1-5

=-4;

3)(2x-y+3)(2x+y-3

=2x2-(y-32

=4x2-(y26y+9

=4x2y2+6y9;

4)(2m+3n22m-3n2

=4m29n22

=16m472m2n2+81n4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“低碳環(huán)保,綠色出行”的理念得到廣大群眾的接受,越來越多的人再次選擇自行車作為出行工具,小軍和爸爸同時從家騎自行車去圖書館,爸爸先以150米/分的速度騎行一段時間,休息了5分鐘,再以m米/分的速度到達(dá)圖書館,小軍始終以同一速度騎行,兩人行駛的路程y(米)與時間x(分鐘)的關(guān)系如圖,請結(jié)合圖象,解答下列問題:
(1)a= , b= , m= ;
(2)若小軍的速度是120米/分,求小軍在途中與爸爸第二次相遇時,距圖書館的距離;
(3)在(2)的條件下,爸爸自第二次出發(fā)至到達(dá)圖書館前,何時與小軍相距100米?
(4)若小軍的行駛速度是v米/分,且在途中與爸爸恰好相遇兩次(不包括家、圖書館兩地),請直接寫出v的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若兩條拋物線的頂點相同,則稱它們?yōu)椤坝押脪佄锞”,拋物線C1:y1=﹣2x2+4x+2與C2:u2=﹣x2+mx+n為“友好拋物線”.

(1)求拋物線C2的解析式.
(2)點A是拋物線C2上在第一象限的動點,過A作AQ⊥x軸,Q為垂足,求AQ+OQ的最大值.
(3)設(shè)拋物線C2的頂點為C,點B的坐標(biāo)為(﹣1,4),問在C2的對稱軸上是否存在點M,使線段MB繞點M逆時針旋轉(zhuǎn)90°得到線段MB′,且點B′恰好落在拋物線C2上?若存在求出點M的坐標(biāo),不存在說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AD=4cm,把紙片沿直線AC折疊,點B落在E處,AE交DC于點O,若AO=5cm,則AB的長為(
A.6cm
B.7cm
C.8cm
D.9cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于xy的二元一次方程組的解都為正數(shù).

1)求a的取值范圍;

2)化簡|a+1|﹣|a﹣1|;

3)若上述二元一次方程組的解是一個等腰三角形的一條腰和一條底邊的長,且這個等腰三角形的周長為9,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)一種圓環(huán)甲(如圖1),它的外圓直徑是8厘米,環(huán)寬1厘米。

①如果把這樣的2個圓環(huán)扣在一起并拉緊(如圖2),長度為 厘米;

②如果用n個這樣的圓環(huán)相扣并拉緊,長度為 厘米。

(2)另一種圓環(huán)乙,像(1)中圓環(huán)甲那樣相扣并拉緊,

3個圓環(huán)乙的長度是28cm5個圓環(huán)乙的長度是44cm,求出圓環(huán)乙的外圓直徑和環(huán)寬;

②現(xiàn)有n(n2)個圓環(huán)甲和n(n2)個圓環(huán)乙,將它們像(1)中那樣相扣并拉緊,長度用n的代數(shù)式表示為多少厘米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABCC點按逆時針方向旋轉(zhuǎn)α角(0°<α<90°)得到△DEC,設(shè)CDABF,連接AD,當(dāng)旋轉(zhuǎn)角α度數(shù)為____________,△ADF是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將矩形AOCD沿直線AE折疊(點E在邊DC上),折疊后端點D恰好落在邊OC上的點F處.若點D的坐標(biāo)為(10,8),則點E的坐標(biāo)為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線 軸、 軸分別相交于點A(-1,0)和B(0,3),其頂點為D.

(1)求這條拋物線的解析式;
(2)若拋物線與 軸的另一個交點為E,求△ODE的面積;拋物線的對稱軸上是否存在點P使得△PAB的周長最短.若存在請求出點P的坐標(biāo),若不存在說明理由.

查看答案和解析>>

同步練習(xí)冊答案