【題目】如圖,已知矩形OABC的一個頂點B的坐標是(4,2),反比例函數(shù)y=x0)的圖象經(jīng)過矩形的對稱中點E,且與邊BC交于點D,若過點D的直線y=mx+n將矩形OABC的面積分成35的兩部分,則此直線的解析式為_____

【答案】y=2x+4或y=﹣x+

【解析】矩形OABC的頂點B的坐標是(42),E是矩形ABCD的對稱中心,

E的坐標為(21),

代入反比例函數(shù)解析式得, =1,

解得k=2

反比例函數(shù)解析式為y=,

D在邊BC上,

D的縱坐標為2

y=2時, =2,

解得x=1,

D的坐標為(1,2);如圖,設(shè)直線與x軸的交點為F,


矩形OABC的面積=4×2=8,

矩形OABC的面積分成35的兩部分,

梯形OFDC的面積為=3×8=5.

D的坐標為(1,2),

1+OF×2=3

解得OF=2,

此時點F的坐標為(20),

,

解得

此時,直線解析式為y=-2x+4;

1+OF×2=5,

解得OF=4

此時點F的坐標為(4,0),與點A重合,

,

解得,

此時,直線解析式為 ,

綜上所述,直線的解析式為y=-2x+4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結(jié)BP,過P作PQBP,PQ交CD于Q,若AP=4,CQ=10,則正方形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB4,∠DAB60°,點EAD邊的中點,點MAB邊上的一個動點(不與點A重合),延長MECD的延長線于點N,連接MD,AN

1)求證:四邊形AMDN是平行四邊形;

2)當AM的值為   時,四邊形AMDN是矩形,請你把猜想出的AM值作為已知條件,說明四邊形AMDN是矩形的理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),沿同一條公路相向而行,相遇時甲、乙所走路程的比為2:3,甲、乙兩車離AB中點C路程y(千米)與甲車出發(fā)時間t(小時)的關(guān)系圖象如圖所示,則下列說法:①A、B兩地之間的距離為180千米;乙車的速度為36千米/小時;③a=3.75;④當乙車到達終點時,甲車距離終點還有30千米.其中正確的結(jié)論有( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一條地下管線由甲工程隊單獨鋪設(shè)需要12天,由乙工程隊單獨鋪設(shè)需要24天,已知甲工程隊鋪設(shè)每天需支付工程費2000元,乙工程隊鋪設(shè)每天需支付工程費1500元.

1)甲、乙兩隊合作施工多少天能完成該管線的鋪設(shè)?

2)由兩隊合作完成該管線鋪設(shè)工程共需支付工程費多少元?

3)根據(jù)實際情況,若該工程要求10天完成,從節(jié)約資金的角度應(yīng)怎樣安排施工?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在數(shù)軸上點A表示數(shù)a,B表示數(shù)b,C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.

(1)a=___,b=___,c=___;

(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”)

(3)A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,B與點C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示);

(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】李明同學早上騎自行車上學,中途因道路施工需步行一段路,到學校共用時18分鐘,他騎自行車的平均速度是300/分鐘,步行的平均速度是120/分鐘,他家離學校的距離是4500.

1)李明上學時騎自行車的路程和步行的路程分別為多少米?

2)放學后李明從17:40開始離;丶,但此時道路施工的地段增長了600米,如果按照上學時的速度,問李明能否在18:00之前到家?請通過計算說明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的面積為32,點D在線段AC上,點F在線段BC的延長線上,且BC=4CF,四邊形DCFE是平行四邊形,則圖中陰影部分的面積為( 。

A. 8 B. 6 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,平面直角坐標系中,拋物線y=ax2+bx+3x軸的兩個交點分別為A(﹣3,0),B(1,0),與y軸的交點為D,對稱軸與拋物線交于點C,與x軸負半軸交于點H.

(1)求拋物線的表達式;

(2)點E,F(xiàn)分別是拋物線對稱軸CH上的兩個動點(點E在點F上方),且EF=1,求使四邊形BDEF的周長最小時的點E,F(xiàn)坐標及最小值;

(3)如圖2,點P為對稱軸左側(cè),x軸上方的拋物線上的點,PQ⊥AC于點Q,是否存在這樣的點P使△PCQ△ACH相似?若存在請求出點P的坐標,若不存在請說明理由.

查看答案和解析>>

同步練習冊答案